Skip to main content

The Pharmacogenetics of Atherosclerosis

  • Chapter
  • First Online:
Clinical Cardiogenetics
  • 902 Accesses

Abstract

Atherosclerosis is a type of arteriosclerosis. It comes from the Greek words athero (meaning gruel or paste) and sclerosis (hardness). Atherosclerosis is the pathophysiological basis of the majority of morbidity and mortality in Western societies. In recent years, progression has been made in unraveling the exact cause for atherosclerosis. It is considered to have a complex pathophysiology, and is a disease of the arterial intima leading to the formation of fibrous (atheromatous) plaques and to stenosis/occlusion of the lumen (Fig. 22.1).1 Atherosclerosis affects large and medium-sized arteries. The artery and position of the plaque varies with each person. In general, atherosclerosis is a slowly progressive disease that may start in childhood. In some people this disease progresses rapidly in their third decade. In others, it does not become threatening until they are in their 50s or 60s.1,2 As mentioned above, the development of atherosclerosis is a complex process, and several major risk factors3 and a growing number of novel risk markers4 have been reported to play a role in its development. Evidence accumulated over decades convincingly demonstrates that family history of atherosclerosis in a parent or a sibling is an important risk factor associated with atherosclerotic coronary artery disease (CAD).5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet. 1997;349:1498-1504.

    Article  PubMed  CAS  Google Scholar 

  2. Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999;340:115-126.

    Article  PubMed  CAS  Google Scholar 

  3. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97:1837-1847.

    Article  PubMed  CAS  Google Scholar 

  4. Ridker PM. Evaluating novel cardiovascular risk factors: can we better predict heart attacks? Ann Intern Med. 1999;130:933-937.

    Article  PubMed  CAS  Google Scholar 

  5. Arnett DK, Baird AE, Barkley RA, et al. Relevance of genetics and genomics for prevention and treatment of cardiovascular disease: a scientific statement from the American Heart Association Council on Epidemiology and Prevention, the Stroke Council, and the Functional Genomics and Translational Biology Interdisciplinary Working Group. Circulation. 2007;115:2878-2901.

    Article  PubMed  Google Scholar 

  6. Marenberg ME, Risch N, Berkman LF, Floderus B, De Faire U. Genetic susceptibility to death from coronary heart disease in a study of twins. N Engl J Med. 1994;330:1041-1046.

    Article  PubMed  CAS  Google Scholar 

  7. Jukema JW, Bruschke AV, van Boven AJ, et al. Effects of lipid lowering by pravastatin on progression and regression of coronary artery disease in symptomatic men with normal to moderately elevated serum cholesterol levels. The Regression Growth Evaluation Statin Study (REGRESS). Circulation. 1995;91:2528-2540.

    Article  PubMed  CAS  Google Scholar 

  8. Katan MB, Beynen AC, de Vries JH, Nobels A. Existence of consistent hypo- and hyperresponders to dietary cholesterol in man. Am J Epidemiol. 1986;123:221-234.

    PubMed  CAS  Google Scholar 

  9. Wang XL, Sim AS, Badenhop RF, McCredie RM, Wilcken DE. A smoking-dependent risk of coronary artery disease associated with a polymorphism of the endothelial nitric oxide synthase gene. Nat Med. 1996;2:41-45.

    Article  PubMed  CAS  Google Scholar 

  10. Nebert DW. Suggestions for the nomenclature of human alleles: relevance to ecogenetics, pharmacogenetics and molecular epidemiology. Pharmacogenetics. 2000;10:279-290.

    Article  PubMed  CAS  Google Scholar 

  11. Roses AD. Pharmacogenetics and future drug development and delivery. Lancet. 2000;355:1358-1361.

    Article  PubMed  CAS  Google Scholar 

  12. Peters RJ, Boekholdt SM. Gene polymorphisms and the risk of myocardial infarction–an emerging relation. N Engl J Med. 2002;347:1963-1965.

    Article  PubMed  Google Scholar 

  13. Wilkins MR, Roses AD, Clifford CP. Pharmacogenetics and the treatment of cardiovascular disease. Heart. 2000;84:353-354.

    Article  PubMed  CAS  Google Scholar 

  14. Kajinami K, Takekoshi N, Brousseau ME, Schaefer EJ. Pharmacogenetics of HMG-CoA reductase inhibitors: exploring the potential for genotype-based individualization of coronary heart disease management. Atherosclerosis. 2004;177:219-234.

    Article  PubMed  CAS  Google Scholar 

  15. McBride KL, Gilchrist GS, Smithson WA, Weinshilboum RM, Szumlanski CL. Severe 6-thioguanine-induced marrow aplasia in a child with acute lymphoblastic leukemia and inherited thiopurine methyltransferase deficiency. J Pediatr Hematol Oncol. 2000;22:441-445.

    Article  PubMed  CAS  Google Scholar 

  16. McLeod HL, Coulthard S, Thomas AE, et al. Analysis of thiopurine methyltransferase variant alleles in childhood acute lymphoblastic leukaemia. Br J Haematol. 1999;105:696-700.

    Article  PubMed  CAS  Google Scholar 

  17. McLeod HL, Krynetski EY, Relling MV, Evans WE. Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia. 2000;14:567-572.

    Article  PubMed  CAS  Google Scholar 

  18. Mikus G, Gross AS, Beckmann J, Hertrampf R, Gundert-Remy U, Eichelbaum M. The influence of the sparteine/debrisoquin phenotype on the disposition of flecainide. Clin Pharmacol Ther. 1989;45:562-567.

    Article  PubMed  CAS  Google Scholar 

  19. Siddoway LA, Thompson KA, McAllister CB, et al. Polymorphism of propafenone metabolism and disposition in man: clinical and pharmacokinetic consequences. Circulation. 1987;75:785-791.

    Article  PubMed  CAS  Google Scholar 

  20. Humma LM, Terra SG. Pharmacogenetics and cardiovascular disease: impact on drug response and applications to disease management. Am J Health Syst Pharm. 2002;59:1241-1252.

    PubMed  CAS  Google Scholar 

  21. Mega JL, Close SL, Wiviott SD, et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009;360:354-362.

    Article  PubMed  CAS  Google Scholar 

  22. Reymer PW, Gagne E, Groenemeyer BE, et al. A lipoprotein lipase mutation (Asn291Ser) is associated with reduced HDL cholesterol levels in premature atherosclerosis. Nat Genet. 1995;10:28-34.

    Article  PubMed  CAS  Google Scholar 

  23. Groenemeijer BE, Hallman MD, Reymer PW, et al. Genetic variant showing a positive interaction with beta-blocking agents with a beneficial influence on lipoprotein lipase activity, HDL cholesterol, and triglyceride levels in coronary artery disease patients. The Ser447-stop substitution in the lipoprotein lipase gene. REGRESS Study Group. Circulation. 1997;95:2628-2635.

    Article  PubMed  CAS  Google Scholar 

  24. Sagoo GS, Tatt I, Salanti G, et al. Seven lipoprotein lipase gene polymorphisms, lipid fractions, and coronary disease: a HuGE association review and meta-analysis. Am J Epidemiol. 2008;168:1233-1246.

    Article  PubMed  Google Scholar 

  25. Rip J, Nierman MC, Ross CJ, et al. Lipoprotein lipase S447X: a naturally occurring gain-of-function mutation. Arterioscler Thromb Vasc Biol. 2006;26:1236-1245.

    Article  PubMed  CAS  Google Scholar 

  26. Mailly F, Tugrul Y, Reymer PW, et al. A common variant in the gene for lipoprotein lipase (Asp9-->Asn). Functional implications and prevalence in normal and hyperlipidemic subjects. Arterioscler Thromb Vasc Biol. 1995;15:468-478.

    Article  PubMed  CAS  Google Scholar 

  27. Jukema JW, van Boven AJ, Groenemeijer B, et al. The Asp9 Asn mutation in the lipoprotein lipase gene is associated with increased progression of coronary atherosclerosis. REGRESS Study Group, Interuniversity Cardiology Institute, Utrecht, The Netherlands. Regression Growth Evaluation Statin Study. Circulation. 1996;94:1913-1918.

    Article  PubMed  CAS  Google Scholar 

  28. Chasman DI, Posada D, Subrahmanyan L, Cook NR, Stanton VP Jr, Ridker PM. Pharmacogenetic study of statin therapy and cholesterol reduction. JAMA. 2004;291:2821-2827.

    Article  PubMed  CAS  Google Scholar 

  29. Berge KE, Ose L, Leren TP. Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy. Arterioscler Thromb Vasc Biol. 2006;26:1094-1100.

    Article  PubMed  CAS  Google Scholar 

  30. Chen SN, Ballantyne CM, Gotto AM Jr, Tan Y, Willerson JT, Marian AJ. A common PCSK9 haplotype, encompassing the E670G coding single nucleotide polymorphism, is a novel genetic marker for plasma low-density lipoprotein cholesterol levels and severity of coronary atherosclerosis. J Am Coll Cardiol. 2005;45:1611-1619.

    Article  PubMed  CAS  Google Scholar 

  31. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354:1264-1272.

    Article  PubMed  CAS  Google Scholar 

  32. Evans D, Beil FU. The E670G SNP in the PCSK9 gene is associated with polygenic hypercholesterolemia in men but not in women. BMC Med Genet. 2006;7:66.

    Article  PubMed  Google Scholar 

  33. Kotowski IK, Pertsemlidis A, Luke A, et al. A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am J Hum Genet. 2006;78:410-422.

    Article  PubMed  CAS  Google Scholar 

  34. Polisecki E, Peter I, Robertson M, et al. Genetic variation at the PCSK9 locus moderately lowers low-density lipoprotein cholesterol levels, but does not significantly lower vascular disease risk in an elderly population. Atherosclerosis. 2008;200:95-101.

    Article  PubMed  CAS  Google Scholar 

  35. Rashid S, Curtis DE, Garuti R, et al. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc Natl Acad Sci U S A. 2005;102:5374-5379.

    Article  PubMed  CAS  Google Scholar 

  36. Mayne J, Dewpura T, Raymond A, et al. Plasma PCSK9 levels are significantly modified by statins and fibrates in humans. Lipids Health Dis. 2008;7:22.

    Article  PubMed  Google Scholar 

  37. Kuivenhoven JA, Jukema JW, Zwinderman AH, et al. The role of a common variant of the cholesteryl ester transfer protein gene in the progression of coronary atherosclerosis. The Regression Growth Evaluation Statin Study Group. N Engl J Med. 1998;338:86-93.

    Article  PubMed  CAS  Google Scholar 

  38. Ordovas JM, Cupples LA, Corella D, et al. Association of cholesteryl ester transfer protein-TaqIB polymorphism with variations in lipoprotein subclasses and coronary heart disease risk: the Framingham study. Arterioscler Thromb Vasc Biol. 2000;20:1323-1329.

    Article  PubMed  CAS  Google Scholar 

  39. Regieli JJ, Jukema JW, Grobbee DE, et al. CETP genotype predicts increased mortality in statin-treated men with proven cardiovascular disease: an adverse pharmacogenetic interaction. Eur Heart J. 2008;29:2792-2799.

    Article  PubMed  CAS  Google Scholar 

  40. der Zee AH Maitland-van, Klungel OH, Stricker BH, et al. Genetic polymorphisms: importance for response to HMG-CoA reductase inhibitors. Atherosclerosis. 2002;163:213-222.

    Article  Google Scholar 

  41. Schmitz G, Langmann T. Pharmacogenomics of cholesterol-lowering therapy. Vascul Pharmacol. 2006;44:75-89.

    Article  PubMed  CAS  Google Scholar 

  42. Gerdes LU, Gerdes C, Kervinen K, et al. The apolipoprotein epsilon4 allele determines prognosis and the effect on prognosis of simvastatin in survivors of myocardial infarction: a substudy of the Scandinavian simvastatin survival study. Circulation. 2000;101:1366-1371.

    Article  PubMed  CAS  Google Scholar 

  43. Link E, Parish S, Armitage J, et al. SLCO1B1 variants and statin-induced myopathy–a genomewide study. N Engl J Med. 2008;359:789-799.

    Article  PubMed  CAS  Google Scholar 

  44. Cambien F, Poirier O, Lecerf L, et al. Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature. 1992;359:641-644.

    Article  PubMed  CAS  Google Scholar 

  45. Agema WR, Jukema JW, Zwinderman AH, van der Wall EE. A meta-analysis of the angiotensin-converting enzyme gene polymorphism and restenosis after percutaneous transluminal coronary revascularization: evidence for publication bias. Am Heart J. 2002;144:760-768.

    PubMed  CAS  Google Scholar 

  46. Agerholm-Larsen B, Nordestgaard BG, Tybjaerg-Hansen A. ACE gene polymorphism in cardiovascular disease: meta-analyses of small and large studies in whites. Arterioscler Thromb Vasc Biol. 2000;20:484-492.

    Article  PubMed  CAS  Google Scholar 

  47. Rieder MJ, Taylor SL, Clark AG, Nickerson DA. Sequence variation in the human angiotensin converting enzyme. Nat Genet. 1999;22:59-62.

    Article  PubMed  CAS  Google Scholar 

  48. Okamura A, Ohishi M, Rakugi H, et al. Pharmacogenetic analysis of the effect of angiotensin-converting enzyme inhibitor on restenosis after percutaneous transluminal coronary angioplasty. Angiology. 1999;50:811-822.

    Article  PubMed  CAS  Google Scholar 

  49. McNamara DM, Holubkov R, Janosko K, et al. Pharmacogenetic interactions between beta-blocker therapy and the angiotensin-converting enzyme deletion polymorphism in patients with congestive heart failure. Circulation. 2001;103:1644-1648.

    Article  PubMed  CAS  Google Scholar 

  50. Roses AD. Pharmacogenetics and the practice of medicine. Nature. 2000;405:857-865.

    Article  PubMed  CAS  Google Scholar 

  51. Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 1995;11:241-247.

    Article  PubMed  CAS  Google Scholar 

  52. Rosenthal N, Schwartz RS. In search of perverse polymorphisms. N Engl J Med. 1998;338:122-124.

    Article  PubMed  CAS  Google Scholar 

  53. Wang XL, Mahaney MC, Sim AS, et al. Genetic contribution of the endothelial constitutive nitric oxide synthase gene to plasma nitric oxide levels. Arterioscler Thromb Vasc Biol. 1997;17:3147-3153.

    Article  PubMed  CAS  Google Scholar 

  54. Jukema JW. Matching treatment to the genetic basis of (lipid) disorder in patients with coronary artery disease. Heart. 1999;82:126-127.

    PubMed  CAS  Google Scholar 

  55. Young RA. Biomedical discovery with DNA arrays. Cell. 2000;102:9-15.

    Article  PubMed  CAS  Google Scholar 

  56. Weber W.W. Pharmacogenetics. Oxford University Press, Newyork 1997.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Monraats .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Monraats, P.S., Jukema, J.W. (2011). The Pharmacogenetics of Atherosclerosis. In: Baars, H., Doevendans, P., van der Smagt, J. (eds) Clinical Cardiogenetics. Springer, London. https://doi.org/10.1007/978-1-84996-471-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-471-5_22

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-470-8

  • Online ISBN: 978-1-84996-471-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics