Skip to main content

Carbon Storage and Fluxes Within Wetland Systems

  • Chapter
Book cover Wetland Systems

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter critically reviews recent literature on carbon storage and fluxes within natural and constructed freshwater wetlands and specifically addresses concerns of readers working in the field of applied science. The purpose is to review and assess the distribution and conversion of carbon in the water environment, particularly within constructed wetland systems. A key aim is to assess if wetlands are carbon sinks or sources. Carbon sequestration and fluxes in natural and constructed wetlands located around the world are assessed. All facets of carbon (solid and gaseous forms) have been covered. Conclusions are based on these studies. Findings indicate that wetlands can be both sources and sinks of carbon, depending on their age, operation, and the environmental boundary conditions such as location and climate. Suggestions for further research needs in the area of carbon storage in wetland sediments are outlined to facilitate the understanding of the processes of carbon storage and removal and also the factors that influence them. This timely chapter should help engineers to make the right decisions when designing wetlands taking climate change into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alford DP, Delaune RD, Lindau CW (1997) Methane flux from Mississippi River deltaic plain wetlands. Biogeochemistry 37:227–236

    CAS  Google Scholar 

  • Alongi DM, Trott LA, Pfitzner J (2007) Deposition, mineralization, and storage of carbon and nitrogen in sediments of the far northern and northern Great Barrier Reef shelf. Continent Shelf Res 27:2595–2622

    Google Scholar 

  • Altor AE, Mitsch WJ (2006) Methane flux from created riparian marshes: relationship to intermittent versus continuous inundation and emergent macrophytes. Ecol Eng 28:224–234

    Google Scholar 

  • Amthor JS, Dale VH, Edwards NT, Garten CT, Gunderson CA, Hanson PJ, Huston MA, King AW, Luxmoore RJ, McLaughlin SB, Marland G, Mulholland PJ, Norby RJ, O’Neill EG, O’Neill RV, Post WM, Shriner DS, Todd DE, Tschaplinski TJ, Turner RS, Tuskan GA, Wullschleger SD (1998) Terrestrial ecosystem responses to global change: a research strategy. ORNL Technical Memorandum 1998/27. Oak Ridge National Laboratory, Oak Ridge, TN

    Google Scholar 

  • Anderson CJ, Mitsch WJ (2006) Sediment, carbon, and nutrient accumulation at two 10-year-old created riverine marshes. Wetlands 26:779–792

    Google Scholar 

  • Armentano TB, Menges ES (1986) Patterns of change in the carbon balance of organic soilwetlands of the temperate zone. J Ecol 74:755–774

    CAS  Google Scholar 

  • Augustin J, Merbach W, Rogasik J (1998) Factors influencing nitrous oxide and methane emissions from minerotrophic fens in Northeast Germany. Biol Fertil Soils 28:1–4

    CAS  Google Scholar 

  • Bano N, Moran MA, Hodson RE (1997) Bacterial utilization of dissolved humic substances from a freshwater swamp. Aquat Microb Ecol 12:233–238

    Google Scholar 

  • Barber LB, Leenheer JA, Noyes TI, Stiles EA (2001) Nature and transformation of dissolved organic matter in treatment wetlands. Environ Sci Technol 35:4805–4816

    CAS  Google Scholar 

  • Bartlett KB, Crill PM, Sebacher DI, Harris RC, Wilson JO, Melack JM (1988) Methane flux from the central Amazonian floodplain. J Geophys Res 93:1571–1582

    CAS  Google Scholar 

  • Bedard-Haughn A, Jongbloed F, Akkerman J, Uijl A, Jong E, Yates T, Pennock D (2006) The effects of erosional and management history on soil organic carbon stores in ephemeral wetlands of hummocky agricultural landscapes. Geoderma 135:296–306

    CAS  Google Scholar 

  • Bellisario LM, Bubier JL, Moore TR, Hanton JP (1999) Controls on CH4 emissions from a northern peatland. Glob Biogeochem Cycles 13:81–91

    CAS  Google Scholar 

  • Bormann BT, Spaltenstein H, McClellan MH, Ugolini FC, Cromackjr K, Nay SM (1995) Rapid soil development after windthrow disturbance in pristine forests. J Ecol 83:747–757

    Google Scholar 

  • Boon PI, Lee K (1997) Methane oxidation in sediments of a floodplain wetland in south-eastern Australia. Lett Appl Microbiol 25:138–142

    CAS  Google Scholar 

  • Brevik EC, Homburg JAA (2004) 5000 year record of carbon sequestration from a coastal lagoon and wetland complex, Southern California, USA. Catena 57:221–232

    CAS  Google Scholar 

  • Bridgham SD, Richardson CJ (1992) Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands. Soil Biol Biochem 24:1089–1099

    CAS  Google Scholar 

  • Bridgham SD, Megonial JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of North American wetlands. Wetlands 26:889–916

    Google Scholar 

  • Brix H, Sorrell BK, Lorenzen B (2001) Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases. Aquat Bot 69:313–324

    CAS  Google Scholar 

  • Bubier JL, Moore TR, Roulet NT (1993) Methane emissions from wetlands in the midboreal region of Northern Ontario, Canada. Ecol 74:2240–2254

    Google Scholar 

  • Buesing N, Gessner MO (2006) Benthic bacterial and fungal productivity and carbon turnover in a freshwater marsh. Appl Environ Microbiol 72:596–605

    CAS  Google Scholar 

  • Burgoon PS, Reddy KR, DeBusk TA (1995) Performance of subsurface flow wetlands with batchload and continuous-flow conditions. Wat Environ Res 67:855–862

    CAS  Google Scholar 

  • Cao M, Gregson K, Marshall S (1998) Global methane emission from wetlands and its sensitivity to climate change. Atmosph Environ 32:3293–3299

    CAS  Google Scholar 

  • Carroll P, Crill PM (1997) Carbon balance of a temperate poor fen. Glob Biogeochem Cycles 11:349–356

    CAS  Google Scholar 

  • Carty A, Scholz M, Heal K, Gouriveau F, Mustafa A (2008) The universal design, operation and maintenance guidelines for farm constructed wetlands (FCW) in temperate climates. Biores Technol 99:6780–6792

    CAS  Google Scholar 

  • Christensen TR (1993) Methane emission from Arctic tundra. Biochemistry 21:117–139

    CAS  Google Scholar 

  • Christensen TR, Ekberg A, Ström L, Mastepanov M, Panikov N, Oquist M, Svenson BH, Nykanen H, Martikainen PJ, Oskarsson H (2003) Factors controlling large scale variations in methane emissions from wetlands. Geophys Res Lett 30:1–67

    Google Scholar 

  • Clair TA, Warner BG, Robarts R, Murkin H, Lilley J, Mortsch L, Rubec C (1998) Canadian wetlands and climate change. In: Koshida G, Avis W (eds) Canada country study: climate impacts and adaptation. Environment, Ottawa, ON, Canada, Vol. VII: National sector volume, pp. 189–218

    Google Scholar 

  • Collins ME, Kuehl RJ (2001) Organic matter accumulation in organic soils. In: Richardson JL, Vepraskas MJ (eds) Wetland soils. Genesis, hydrology, landscapes, and classification. Lewis/CRC, Boca Raton, FL, USA, pp. 137–162

    Google Scholar 

  • Craft CB, Richardson CJ (1998) Recent and long-term organic soil accretion and nutrient accumulation in the everglades. Soil Sci Soc Am J 62:834–843

    CAS  Google Scholar 

  • Crutzen PJ (1995) On the role of CH4 in atmospheric chemistry: sources sinks and possible reductions in atmospheric sources. Ambio 24:52–55

    Google Scholar 

  • D’Angelo EM, Reddy KR (1999) Regulators of heterotrophic microbial potentials in wetland soils. Soil Biol Biochem 31:815–830

    Google Scholar 

  • Daulat WE, Clymo RS (1998) Effects of temperature and water table on the efflux of methane from peatland surface cores. Atmosph Environ 32:3207–3218

    CAS  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    CAS  Google Scholar 

  • Dick WA, Gregorich EG (2004) Developing and maintaining soil organic matter levels. In: Schjønning P, Elmholt S, Christensen BT (eds) Managing soil quality: challenges in modern agriculture. Centre for Agricultural Bioscience International, Cambridge, MA, USA, pp. 103−120

    Google Scholar 

  • Euliss NH Jr, Gleason RA, Olness A, McDougal RL, Murkin HR, Robarts RD, Bourbonniere RA, Warner BG (2006) North American prairie wetlands are important nonforested landbased carbon storage sites. Sci Total Environ 361:179–188

    CAS  Google Scholar 

  • Fey A, Benckiser G, Ottow JCG (1999) Emissions of nitrous oxide from a constructed wetland using a groundfilter and macrophytes in wastewater purification of a dairy farm. Biol Fertil Soils 29:354–359

    CAS  Google Scholar 

  • Fischer H, Pusch M (1999) Use of the [14C ] leucine incorporation technique to measure bacterial production in river sediments and the epiphyton. Appl Environ Microbiol 65:4411–4418

    CAS  Google Scholar 

  • Freeman C, Ostle N, Kang H (2001a) An enzymic “latch” on a global carbon store. Nature 409:149

    CAS  Google Scholar 

  • Freeman C, Ostle NJ, Fenner N, Kang H (2004) A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biol Biochem 36:1663–1667

    CAS  Google Scholar 

  • Freeman C, Evans CD, Monteith DT, Reynolds B, Fenner N (2001b) Export of organic carbon from peat soils. Nature 412:785

    CAS  Google Scholar 

  • Glatze S, Basiliko N, Moore T (2004) Carbon dioxide and methane production potentials of peats from natural, harvested and restored sites, Eastern Quebec, Canada. Wetlands 24:261–267

    Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Google Scholar 

  • Gorham E, Underwood JK, Janssens JA, Freedman B, Maass W, Waller DH, Ogden JG (1998) The chemistry of streams in southwestern and central Nova Scotia, with particular reference to catchment vegetation and the influence of dissolved organic carbon primarily from wetlands. Wetlands 18:115–132

    Google Scholar 

  • Grünfeld S, Brix H (1999) Methanogenesis and methane emissions: effects of water table, substrate type and presence of Phragmites australis. Aquat Bot 64:63–75

    Google Scholar 

  • Haberl H, Erb K-H, Krausmann F, Adensam H, Schulz N (2003) Land-use change and socioeconomic metabolism in Austria. II: Land-use scenarios for 2020. Land Use Policy 20:21–39

    Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Mol Biol Rev 60:439–471

    CAS  Google Scholar 

  • Harriss RC, Sebacher DI, Day FP JR (1982) Methane flux in the Great Dismal Swamp. Nature 297:673–674

    CAS  Google Scholar 

  • Hartel PG (2005) The soil habitat. In: Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (eds) Principles and applications of soil microbiology, 2nd edn. Pearson/Prentice Hall. Upper Saddle River, NJ, USA, pp. 26–53

    Google Scholar 

  • Hedges JI, Keil RG, Benner R (1997) What happens to terrestrial organic matter in the ocean? Organ Geochem 27:195–212

    CAS  Google Scholar 

  • Hedmark Å, Scholz M (2008) Review of environmental effects and treatment of runoff from storage and handling of wood. Biores Technol 99:5997–6009

    CAS  Google Scholar 

  • Hensel PF, Day JW Jr, Pont D (1999) Wetland vertical accretion and soil elevation change in the Rhône River delta, France: the importance of riverine flooding. J Coastal Res 15:668–681

    Google Scholar 

  • Hobbie SE, Schimel JP, Trumbore SE, Randerson JR (2000) Controls over carbon storage and turnover in high-latitude soils. Glob Change Biol 6:196–210

    Google Scholar 

  • Holden J (2005) Peatland hydrology and carbon release: why small-scale process matters. Philosoph Trans R Soc A 363:2891–2913

    CAS  Google Scholar 

  • Hou AX, Chen GX, Wang ZP, Cleemput OV, Patrick WH (2000) Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes. Soil Sci Soc Am J 64:2180–2186

    CAS  Google Scholar 

  • Ibekwe AM, Grieve CM, Lyon SR (2003) Characterization of microbial communities and composition in constructed dairy wetland wastewater effluent. Appl Environ Microbiol 69: 5060–5069

    CAS  Google Scholar 

  • Inamori R, Gui P, Dass P, Matsumura M, Xu KQ, Kondo T, Ebie Y, Inamori Y (2007) Investigating CH4 and N2O emissions from eco-engineering wastewater treatment processes using constructed wetland microcosms. Proc Biochem 42:363–373

    CAS  Google Scholar 

  • Joabsson A, Christensen TR (2001) Methane emissions from wetlands and their relationship with vascular plants: an Arctic example. Glob Change Biol 7:919–932

    Google Scholar 

  • Joabsson A, Christensen TR, Wallein B (1999) Vascular plant controls on methane emissions from northern peatforming wetlands. Trends Ecol Evolut 14:385–388

    Google Scholar 

  • Johansson AE, Gustavsson AM, Oquist MG, Svensson BH (2004) Methane emissions from a constructed wetland treating wastewater: seasonal and spatial distribution and dependence on edaphic factors. Wat Res 38:3960–3970

    CAS  Google Scholar 

  • Johansson AE, Kasimir-Klemedtsson A, Klemedtsson L, Svensson BH (2003) Nitrous oxide exchanges with the atmosphere of a constructed wetland treating wastewater. Tell Series B Chem Phys Meteorol 55:737–750

    Google Scholar 

  • Johnston CA (1991) Sediment and nutrient retention by freshwater wetlands: effects on surface water quality. Crit Rev Environ Control 21:491–565

    Google Scholar 

  • Kadlec RH, Knight RL (1996) Treatment wetlands. CRC, Boca Raton, FL, USA

    Google Scholar 

  • Kadlec RH, Knight RL, Vymazal J, Brix H, Cooper P, Haberl R (2000) Constructed wetlands for pollution control. Scientific and technical report no. 8, International Water Association, London

    Google Scholar 

  • Kang H, Freeman C (2002) The influence of hydrochemistry on methane emissions from two contrasting Northern wetlands. Wat Air Soil Pollut 141:263–272

    CAS  Google Scholar 

  • Kayranli B, Scholz M, Mustafa A, Hedmark Å (2010) Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands 30:111–124

    Google Scholar 

  • Kelley CA, Martens CS, Ussler W (1995) Methane dynamics across a tidally flooded riverbank margin. Limnol Oceanogr 40:1112–1129

    CAS  Google Scholar 

  • King GM (1996) In situ analyses of methane oxidation associated with the roots and rhizomes of a bur reed, Sparganium eurycarpum, in a Maine wetland. Appl Environ Microbiol 62: 4548–4555

    CAS  Google Scholar 

  • Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic storage. Soil Biol Biochem 27:753–760

    CAS  Google Scholar 

  • Krogh L, Noergaard A, Hermansen M, Greve MH, Balstroem T, Madsen HB (2003) Preliminary estimates of contemporary soil organic carbon stocks in Denmark using multiple datasets and four scaling-up methods. Agric Ecosyst Environ 96:19–28

    Google Scholar 

  • Knight RL, Wallace SD (2008) Treatment wetlands. 2nd edn. CRC, Boca Raton, FL, USA

    Google Scholar 

  • Knoblauch C, Zimmermann U, Blumenberg M, Michaelis W, Pfeiffer E (2008) Methane turnover and temperature response of methane-oxidizing bacteria in permafrost-affected soils of northeast Siberia. Soil Biol Biochem 40:3004–3013

    CAS  Google Scholar 

  • Kragh T, Søndergaard M (2004) Production and bioavailability of autochthonous dissolved organic carbon: effects of mesozooplankton. Aquat Microb Ecol 36:61–72

    Google Scholar 

  • Lafleur PM, Moore TR, Roulet NT, Frolking S (2005) Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems 8:619–629

    CAS  Google Scholar 

  • Landry GM, Maranger R, Brisson J, Chazarenc F (2009) Greenhouse gas production and efficiency of planted and artificially aerated constructed wetlands. Environ Pollut 157:748–754

    Google Scholar 

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50

    Google Scholar 

  • Li J, Wen Y, Zhou Q, Xingjie Z, Li X, Yang S, Lin T (2008) Influence of vegetation and substrate on the removal and transformation of dissolved organic matter in horizontal subsurfaceflow constructed wetlands. Biores Technol 99:4990–4996

    CAS  Google Scholar 

  • Liblik LK, Moore TR, Bubier JL, Robinson SD (1997) Methane emissions from wetlands in the zone of discontinuous permafrost: Fort Simpson, Northwest Territories, Canada. Glob Biogeochem Cycles 11:485–494

    CAS  Google Scholar 

  • Liikanen A, Huttunen JT, Karjalainen SM, Heikkinen K, Vaisanen TS, Nykanen H, Martikainen PJ (2006) Temporal and seasonal changes in greenhouse gas emissions from a constructed wetland purifying peat mining runoff water. Ecol Eng 26:241–251

    Google Scholar 

  • Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G (2008) Peatlands and the carbon cycle: from local processes to global implications, a synthesis. Biogeosciences 5:1475–1491

    CAS  Google Scholar 

  • Lloyd CR (2006) Annual carbon balance of a managed wetland meadow in the Somerset Levels, UK. Agric For Meteorol 138:168–179

    Google Scholar 

  • Machate T, Noll BHH, Kettrup A (1997) Degradation of Phenanthrene and hydraulic characteristics in a constructed wetland. Wat Res 31:554–560

    CAS  Google Scholar 

  • Maljanen M, Kohonen AR, Virkajarvi P, Martikainen PJ (2007) Fluxes and production of N2O, CO2 and CH4 in boreal agricultural soil during winter as affected by snowcover. Tellus 59:853–859

    Google Scholar 

  • Malmer N, Johansson T, Olsrud M, Christensen TR (2005) Vegetation, climate changes and net carbon sequestration in a North-Scandinavian sub-arctic mire over 30 years. Glob Change Biol 11:1895–1909

    Google Scholar 

  • Mander Ü, Teiter S, Augustin J (2005) Emission of greenhouse gases from constructed wetlands for wastewater treatment and from riparian buffer zones. Wat Sci Technol 52:167–176

    CAS  Google Scholar 

  • Mander Ü, Lõhmus K, Teiter S, Mauring T, Nurk K, Augustin J (2008) Gaseous fluxes in the nitrogen and carbon budgets of subsurface flow constructed wetlands. Sci Total Environ 404:343–353

    CAS  Google Scholar 

  • McCarty GW, Ritchie JC (2002) Impact of soil movement on carbon sequestration in agricultural ecosystems. Environ Pollut 116:423–430

    CAS  Google Scholar 

  • Mitra S, Wassmann R, Vlek PLG (2005) An appraisal of global wetland area and its organic carbon stock. Curr Sci 88:25–35

    CAS  Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands, 4th edn. Wiley, New York

    Google Scholar 

  • Moore TR, Dalva M (1993) The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. J Soil Sci 44: 651–664

    CAS  Google Scholar 

  • Moore TR, Dalva M (1997) Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubations. Soil Biol Biochem 29:1157–1164

    CAS  Google Scholar 

  • Moore TR, Roulet NT (1993) Methane flux: water table relations in northern wetlands. Geophys Res Lett 20:587–590

    CAS  Google Scholar 

  • Moore TR, Roulet NT (1995) Methane emissions from Canadian peatlands. In: Lal R, Kimble J, Levine E, Stewart BA (eds) Soils and global change. Lewis, Boca Raton, FL, USA, Chap 12, pp. 153–164

    Google Scholar 

  • Moore TR, Roulet NT, Waddington JM (1998) Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands. Clim Change 40:229–245

    CAS  Google Scholar 

  • Moore TR, Bubier JL, Frolking SE, Lafleur PM, Roulet NT (2002) Plant biomass and production and CO2 exchange in an ombrotrophic bog. J Ecol 90: 25–36

    Google Scholar 

  • Mørkved PT, Dörsch P, Henriksen TM, Bakken LR (2006) N2O emissions and product ratios of nitrification and denitrification as affected by freezing and thawing. Soil Biol Biochem 38:3411–3420

    Google Scholar 

  • Ogden MH (2001) Atmospheric carbon reduction and carbon sequestration in small community wastewater treatment systems using constructed wetlands. In: Mancl K (ed) Proceedings of on-site wastewater treatment. 9th national symposium on individual and small community sewage systems, American Society of Agricultural Engineers, Fort Worth, TX, pp. 674–683

    Google Scholar 

  • Öquist MG, Petrone K, Nilsson M, Klemedtsson L (2007) Nitrification controls N2O production rates in frozen boreal forest soil. Soil Biol Biochem 39:1809–1811

    Google Scholar 

  • Picek T, Cızkova H, Dusek J (2007) Greenhouse gas emissions from a constructed wetland – plants as important sources of carbon. Ecol Eng 31:98–106

    Google Scholar 

  • Pind A, Freeman C, Lock MA (1994) Enzymatic degradation of phenolic materials in peatlands – measurement of phenol oxidase activity. Plant Soil 159:227–231

    CAS  Google Scholar 

  • Pinney ML, Westerhoff PKM, Bakerm L (2000) Transformations in dissolved organic carbon through constructed wetlands. Wat Res 34:1897–1911

    CAS  Google Scholar 

  • Price JS, Waddington MJ (2000) Advances in Canadian wetland hydrology and biogeochemistry. Hydrol Proc 14:1579–1589

    Google Scholar 

  • Qualls RG, Haines BL (1992) Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water. Soil Sci Soc Am J 56:578–586

    CAS  Google Scholar 

  • Quanrud DM, Karpiscak MM, Lansey KE, Arnold RG (2004) Transformation of effluent organic matter during subsurface wetland treatment in the Sonoran Desert. Chemosphere 54:777–788

    CAS  Google Scholar 

  • Raghoebarsing AA, Smolders AJP, Schmid MC, Rijpstra WIC, Wolters-Arts M, Derksen J, Jetten MSM, Schouten S, Damste JSS, Lamers LPM, Roelofs JGM, den Camp HJMO, Strous M (2005) Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436:1153–1156

    CAS  Google Scholar 

  • Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Damste JSS, Op den Camp HJM, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440: 918–921

    CAS  Google Scholar 

  • Rasmussen PE, Albrecht SL, Smiley RW (1998) Soil C and N changes under tillage and cropping systems in semi-arid Pacific Northwest agriculture. Soil Tillage Res 47:197–205

    Google Scholar 

  • Reddy KR, D’Angelo EM (1997) Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands. Wat Sci Technol 35:1–10

    CAS  Google Scholar 

  • Reddy KR, Delaune RD (2008) Biogeochemistry of wetlands: science and applications. CRC/Taylor & Francis, Boca Raton, FL, USA

    Google Scholar 

  • Roulet NT, Ash R, Quinton W, Moore T (1993) Methane flux from drained northern peatlands: effect of a persistent water table lowering on flux. Glob Biogeochem Cycle 7:749–769

    CAS  Google Scholar 

  • Salm J-O, Kimmel K, Uri V, Mander Ü (2009) Global warming potential of drained and undrained peatlands in Estonia: a synthesis. Wetlands 29:1081–1092

    Google Scholar 

  • Savage KE, Davidson EA (2001) Inter-annual variation of soil respiration in two New England forests. Glob Biogeochem Cycles 15:337–350

    CAS  Google Scholar 

  • Scanlon D, Moore TR (2000) Carbon dioxide production from peatland soil profiles: the influence of temperature, oxic/anoxic conditions and substrate. Soil Sci 165:153–60

    CAS  Google Scholar 

  • Schipper LA, Reddy KR (1994) Methane production and emission from four reclaimed and pristine wetlands of southeastern United States. Soil Sci Soc Am J 58:1270–1275

    CAS  Google Scholar 

  • Schlesinger WH (1991) Biogeochemistry: an analysis of global change. Academic, San Diego, CA, USA

    Google Scholar 

  • Schlesinger WH (1997) An analysis of global change. Academic, Harcourt Brace, San Diego, CA, USA

    Google Scholar 

  • Scholz M (2006) Wetland systems to control urban runoff. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Scholz M, Trepel M (2004a) Hydraulic characteristics of groundwater-fed open ditches in a peatland. Ecol Eng 23:29–45

    Google Scholar 

  • Scholz M, Trepel M (2004b) Water quality characteristics of vegetated groundwater-fed ditches in a riparian peatland. Sci Total Environ 332:109–122

    CAS  Google Scholar 

  • Scholz M, Harrington R, Carroll P, Mustafa A (2007) The integrated constructed wetlands (ICW) concept. Wetlands 27:337–354

    Google Scholar 

  • Shepherd D, Burgess D, Jickells T, Andrew JS, Cave R, Turner RK, Aldridge J, Parker ER, Young E (2007) Modelling the effects and economics of managed realignment on the cycling and storage of nutrients, carbon and sediments in the Blackwater estuary, UK. Estuar Coastal Shelf Sci 73:355–367

    Google Scholar 

  • Sherry S, Ramon A, Eric M, Richard E, Barry W, Peter D, Susan T (1998) Precambrian shield wetlands: hydrologic control of the sources and export of dissolved organic matter. Clim Change 40:167–188

    Google Scholar 

  • Sleytr K, Tietz A, Langengraber G, Haberl R (2007) Investigation of bacterial removal during the filtration process in constructed wetlands. Sci Total Environ 380:173–180

    CAS  Google Scholar 

  • Smith LK, Lewis WM, Chanton JP, Cronin G, Hamilton SK (2000) Methane emissions from the Orinoco River floodplain, Venezuela. Biogeochemistry 51:113–140

    Google Scholar 

  • Stadmark J, Leonardson L (2005) Emissions of greenhouse gases from ponds constructed for nitrogen removal. Ecol Eng 25:542–551

    Google Scholar 

  • Stern J, Wang Y, Gu B, Newman J (2007) Distribution and turnover of carbon in natural and constructed wetlands in the Florida Everglades. Appl Geochem 22:1936–1948

    CAS  Google Scholar 

  • Stottmeister U, Wießner A, Kuschk P, Kappelmeyer U, Kastner M, Bederski O, Muller RA, Moormann R (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22:93–117

    CAS  Google Scholar 

  • Ström L, Christensen TR (2007) Below ground carbon turnover and greenhouse gas exchanges in a sub-arctic wetland. Soil Biol Biochem 39:1689–1698

    Google Scholar 

  • Ström L, Ekberg A, Mastepanov M, Christensen TR (2003) The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Glob Change Biol 9: 1185–1192

    Google Scholar 

  • Tanner CC (2001) Plants as ecosystem engineers in subsurface-flow treatment wetlands. Wat Sci Technol 44:9–17

    CAS  Google Scholar 

  • Tanner CC, Adams DD, Downes MT (1997) Methane emissions from constructed wetlands treating agricultural wastewaters. J Environ Qual 26:1056–1062

    CAS  Google Scholar 

  • Teiter S, Mander Ü (2005) Emission of N2O, N2, CH4, and CO2 from constructed wetlands for wastewater treatment and from riparian buffer zones. Ecol Eng 25:528–541

    Google Scholar 

  • Tietz A, Langergraber G, Watzinger A, Haberl R, Kirschner AKT (2008) Bacterial carbon utilization in vertical subsurface flow constructed wetlands. Wat Res 42:1622–1634

    CAS  Google Scholar 

  • Tipping PW, Center TD (2002) Evaluating acephate for insecticide exclusion of Oxyops vitiosa (Coleoptera: Curculionidae) from Melaleuca quinquenervia. Florida Entomol 85:458–463

    CAS  Google Scholar 

  • Trettin CC, Jurgensen MF (2003) Carbon cycling in wetland forest soils. In: Kimble J, Birdsie R, Lal R (eds) Carbon sequestration in US forests. Lewis, Boca Raton, FL, USA, pp. 311–328

    Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Tank AK, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp. 235–336

    Google Scholar 

  • Tuittila ES, Komulainen VM, Vasander H, Nykanen H, Martikainen PJ, Laine K (2000) Methane dynamics of a restored cut-away peatland. Glob Change Biol 6:569–581

    Google Scholar 

  • Turcq B, Cordeiro RC, Albuquerque ALS, Sifeddine A, Simoes Filho FFL, Souza AG, Abrao JJ, Oliveira FBL, Silva AO, Capitaneo JA (2002) Accumulation of organic carbon in five Brazilian lakes during the Holocene. Sediment Geol 148:319–342

    CAS  Google Scholar 

  • Turetsky M, Wieder K, Halsey L, Vitt D (2002) Current disturbance and the diminishing peatland carbon sink. Geophys Res Lett 29:21-1–21-4

    Google Scholar 

  • Updegraff K, Bridgham SD, Pastor J, Weishampel P, Harth C (2001) Response of CO2 and CH4 emissions in peatlands to warming and water-table manipulation. Ecol Appl 11:311–326

    Google Scholar 

  • van Bochove E, Thériault G, Rochette P (2001) Thick ice layers in snow and frozen soil affecting gas emissions from agricultural soils during winter. J Geophys Res 106:23061–23071

    Google Scholar 

  • Van der Peijl MJ, Verhoeven JTA (1999) A model of carbon, nitrogen and phosphorus dynamics and their interactions in river marginal wetlands. Ecol Modell 118:95–130

    Google Scholar 

  • Vavrova P, Penttila T, Laiho R (2009) Decomposition of Scots pine fine woody debris in boreal conditions: Implications for estimating carbon pools and fluxes. For Ecol Manag 257: 401–412

    Google Scholar 

  • Voelker BM, Kogut MB (2001) Interpretation of metal speciation data in coastal waters: the effects of humic substances on copper binding as a test case. Mar Chem 74:303–318

    CAS  Google Scholar 

  • Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380:48–65

    CAS  Google Scholar 

  • Waddington JM, Rotenberg PA, Warren FJ (2001) Peat CO2 production in a natural and cutover peatland: Implications for restoration. Biogeochemistry 54:115–130

    CAS  Google Scholar 

  • Waddington JM, Roulet NT, Swanson RV (1996) Water table control of CH4 emission enhancement by vascular plants in boreal peatlands. J Geophys Res 101:775–785

    Google Scholar 

  • Walter B, Heimann M (2000) A process-based, climate-sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters and climate. Glob Biogeochem Cycles 14:745–765

    CAS  Google Scholar 

  • Weishampel P, Kolka R, King JY (2009) Carbon pools and productivity in a 1-km2 heterogeneous forest and peatlandmosaic in Minnesota, USA. For Ecol Manag 257:747–754

    Google Scholar 

  • Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environ Eng Sci 22:73–94

    CAS  Google Scholar 

  • Whiting GJ, Chanton JP (2001) Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus 53:521–528

    Google Scholar 

  • Williams CJ, Shingara EA, Yavitt JB (2000) Phenol oxidase activity in peatlands in New York State: response to summer drought and peat type. Wetlands 20:416–421

    Google Scholar 

  • Wolf DC, Wagner GH (2005) Carbon transformations and soil organic matter formation. In: Sylvia DM, Fuhrman J, Hartel PG, Zuberer DA (eds) Principles and applications of soil microbiology, 2nd edn. Prentice Hall, Upper Saddle River, NJ, USA, pp. 285–332

    Google Scholar 

  • Wuebbles DJ, Hayhoe K (2002) Atmospheric methane and global change. Earth-Sci Rev 57:177–210

    CAS  Google Scholar 

  • Wynn TM, Liehr SK (2001) Development of a constructed subsurface-flow wetland simulation model. Ecol Eng 16:519–536

    Google Scholar 

  • Xue Y, Kovacic DA, David MB, Gentry LE, Mulvaney RL, Lindau CW (1999) In situ measurements of denitrification in constructed wetlands. J Environ Qual 28:263–269

    CAS  Google Scholar 

  • Yu Z, Apps MJ, Bhatti JS (2002) Implication of floristic and environmental variation for carbon cycle dynamics in boreal forest ecosystems of Central Canada. J Vegetat Sci 13:327–340

    Google Scholar 

  • Yurova A, Lankreijer H (2007) Carbon storage in the organic layers of boreal forest soils under various moisture conditions: a model study for Northern Sweden sites. Ecol Modell 204: 475–484

    Google Scholar 

  • Zhang JB, Song CC, Yang WY (2005) Cold season CH4, CO2 and N2O from freshwater marshes in northeast China. Chemosphere 59:1703–1705

    CAS  Google Scholar 

  • Zhu T, Sikora FJ (1995) Ammonium and nitrate removal in vegetated and unvegetated gravel bed microcosm wetlands. Wat Sci Technol 32:219–228

    CAS  Google Scholar 

  • Zweifel UL (1999) Factors controlling accumulation of labile dissolved organic carbon in the Gulf of Riga. Estuar Coastal Shelf Sci 48:357–370

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

Scholz, M. (2011). Carbon Storage and Fluxes Within Wetland Systems. In: Wetland Systems. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-84996-459-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-459-3_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-458-6

  • Online ISBN: 978-1-84996-459-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics