Skip to main content

Light Tissue Interactions

  • Chapter
  • First Online:
Aesthetic Applications of Intense Pulsed Light

Abstract

The effects of light on skin are due to various degrees of absorption of electromagnetic radiation. The visible light spectrum has a 400–760 nm wavelength. The light-tissue interaction effects are due to absorption and excitation of photons. The Intense Pulse Light is situated in the visible light of the electromagnetic spectrum. Once the light reaches the skin, part of it is absorbed, part is reflected or scattered, and part is further transmitted. Selective photothermolysis is the basic principle of Intense Pulsed Light treatment. It consists of matching a specific wavelength and pulse duration to obtain optimal effect on a target tissue with minimal effect on the surrounding tissues. The structures of the tissue that absorb the photons are known as chromophores. They have different wavelengths of absorption. The most common chromophores encountered in the skin are: hemoglobin and its derivates, melanin, water and foreign pigmented tattoos. The main target structures for Intense Pulsed Light treatment are melanin and blood vessels. The fluence delivered to the chromophores must be high enough to destroy them. In order to enhance the photodynamic therapy effect which is based on selective phothermolysis, photosensistizers can be used as adjuvants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson RR, Parrish JA. The optics of human skin. J Invest Dermatol. 1981;77(1):13–19.

    Article  PubMed  CAS  Google Scholar 

  • Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science. 1983;220(4596):524–527.

    Article  PubMed  CAS  Google Scholar 

  • Carroll L, Humphreys TR. LASER-tissue interactions. Clin Dermatol. 2006;24(1):2–7.

    Article  PubMed  Google Scholar 

  • Everett MA, Yeargers E, Sayre RM et al. Penetration of epidermis by ultraviolet rays. Photochem Photobiol. 1966;5(7):533–542.

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick TB. The validity and practicality of sun-reactive skin types I through VI. Arch Dermatol. 1988;124(6):869–871.

    Article  PubMed  CAS  Google Scholar 

  • Goldman MP, Weiss RA, Weiss MA. Intense pulsed light as a nonablative approach to photoaging. Dermatol Surg. 2005;31(9 Pt 2):1179–1187; discussion 1187.

    PubMed  CAS  Google Scholar 

  • Herd RM, Dover JS Arndt KA. Basic laser principles. Dermatol Clin. 1997;15(3):355–372.

    PubMed  CAS  Google Scholar 

  • Ito S, Wakamatsu K. Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res. 2003;16(5):523–531.

    Article  PubMed  Google Scholar 

  • Keijzer M, Jacques SL, Prahl SA et al. Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams. Lasers Surg Med. 1989;9(2):148–154.

    Article  PubMed  CAS  Google Scholar 

  • Marmur ES, Phelps R Goldberg DJ. Ultrastructural changes seen after ALA-IPL photorejuvenation: a pilot study. J Cosmet Laser Ther. 2005;7(1):21–24.

    Article  PubMed  Google Scholar 

  • Matts PJ, Dykes PJ Marks R. The distribution of melanin in skin determined in vivo. Br J Dermatol. 2007;156(4):620–628.

    Article  PubMed  CAS  Google Scholar 

  • Matts PJ, Fink B, Grammer K et al. Color homogeneity and visual perception of age, health, and attractiveness of female facial skin. J Am Acad Dermatol. 2007;57(6):977–984.

    Article  PubMed  Google Scholar 

  • Moncrieff M, Cotton S, Claridge E et al. Spectrophotometric intracutaneous analysis: a new technique for imaging pigmented skin lesions. Br J Dermatol. 2002;146(3):448–457.

    Article  PubMed  CAS  Google Scholar 

  • Naylor MF, Boyd A, Smith DW et al. High sun protection factor sunscreens in the suppression of actinic neoplasia. Arch Dermatol. 1995;131(2):170–175.

    Article  PubMed  CAS  Google Scholar 

  • Nyman ES, Hynninen PH. Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. J Photochem Photobiol B. 2004;73(1–2):1–28.

    Article  PubMed  CAS  Google Scholar 

  • Pervaiz S, Olivo M. Art and science of photodynamic therapy. Clin Exp Pharmacol Physiol. 2006;33(5–6):551–556.

    Article  PubMed  CAS  Google Scholar 

  • Piacquadio DJ, Chen DM, Farber HF et al. Photodynamic therapy with aminolevulinic acid topical solution and visible blue light in the treatment of multiple actinic keratoses of the face and scalp: investigator-blinded, phase 3, multicenter trials. Arch Dermatol. 2004;140(1):41–46.

    Article  PubMed  CAS  Google Scholar 

  • Thompson SC, Jolley D Marks R. Reduction of solar keratoses by regular sunscreen use. N Engl J Med. 1993;329(16):1147–1151.

    Article  PubMed  CAS  Google Scholar 

  • van Gemert MJ, Welch AJ. Time constants in thermal laser medicine. Lasers Surg Med. 1989;9(4):405–421.

    Article  PubMed  CAS  Google Scholar 

  • Wakamatsu K, Ito S. Advanced chemical methods in melanin determination. Pigment Cell Res. 2002;15(3):174–183.

    Article  PubMed  CAS  Google Scholar 

  • Ye T, Pawlak A, Sarna T et al. Different molecular constituents in pheomelanin are responsible for emission, transient absorption and oxygen photoconsumption. Photochem Photobiol. 2008;84(2):437–443.

    Article  PubMed  CAS  Google Scholar 

  • Young AR. Chromophores in human skin. Phys Med Biol. 1997;42(5):789–802.

    Article  PubMed  CAS  Google Scholar 

  • Zonios G, Bykowski J Kollias N. Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. J Invest Dermatol. 2001;117(6):1452–1457.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Fodor, L., Ullmann, Y., Elman, M. (2011). Light Tissue Interactions. In: Aesthetic Applications of Intense Pulsed Light. Springer, London. https://doi.org/10.1007/978-1-84996-456-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-456-2_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-455-5

  • Online ISBN: 978-1-84996-456-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics