Skip to main content

An innovative approach for the fabrication of highly conductive nanocomposites with different carbon

  • Conference paper
Proceedings of the 36th International MATADOR Conference

Abstract

A novel approach to the preparation of a super-conductive polymeric nanocomposite system with different carbon fillers is presented. The ternary composites of polyamide 6 (PA6) and conductive carbon black (CCB) and multi-walled carbon nanotubes (MWCNTs) were fabricated by a melt-mixing technique. The ternary nanocomposites with the high filler contents showed extremely higher conductivity compared with the corresponding binary polymer composites. The effects of CCB and MWCNTs at different compositions on the rheological, physical, morphological, thermal, mechanical, and electrical properties of the ternary nanocomposites have been studied systematically. A mechanism for the complementary effects of CCB and MWCNTs has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wampler WA, Carlson TF, Jones WR, (2003) In Rubber Compounding – Chemistry and Applications; Rodgers B, Ed, Marcel Dekker, Inc.: New York, 239-84

    Google Scholar 

  2. Boonstra BB, (1967) Journal of Applied Polymer Science, 11:389-406

    Article  Google Scholar 

  3. Lee CH, Kim SW, (2000) Journal of Applied Polymer Science, 78:2540-6

    Article  Google Scholar 

  4. Ghofraniha M, Salovey R, (1998) Polymer Engineering & Science, 28:58-63

    Google Scholar 

  5. Lee GJ, Suh KD, Im SS, (1998) Polymer Engineering & Science, 38:471-7

    Article  Google Scholar 

  6. Narkis M, Ram A, Flashner F, (1978) Polymer Engineering & Science, 18:649-53

    Article  Google Scholar 

  7. Tang H, Liu ZY, Piao JH, Chen XF, Lou YX, Li SH, (1994) Journal of Applied Polymer Science, 51:1159-64

    Article  Google Scholar 

  8. Gruenberger TM, Priese A, Van Bellingen C, Grivei E, Ciallella C, Probst N, (2008) Plastics & Rubber Singapore Journal, 15:21-8

    Google Scholar 

  9. Grunlan JC, Gerberich WW, Francis LF, (2001) Polymer Engineering & Science, 41:1947-62

    Article  Google Scholar 

  10. Kim DJ, Seo KH, Hong KH, Kim SY, (1999) Polymer Engineering & Science, 39:500-7

    Article  Google Scholar 

  11. Koysuren O, Yesil S, Bayram G, (2006) Journal of Applied Polymer Science, 102:2520-6

    Article  Google Scholar 

  12. Iijima S, (1991) Nature, 354:56-8

    Article  Google Scholar 

  13. Lee CJ, Park J, Kang SY, Lee JH, (2000) Chemical Physics Letters, 326:175-80

    Article  Google Scholar 

  14. Saito R, Dresselhaus G, Dresselhaus MS, (1998) Physical properties of carbon nanotubes; Imperial College Press: London

    Book  Google Scholar 

  15. Ebbesen TW, (1996) Journal of Physics and Chemistry of Solids, 57:951-5

    Article  Google Scholar 

  16. Treacy MMJ, Ebbesen TW, Gibson JM, (1996) Nature, 381:678-80

    Article  Google Scholar 

  17. Andrews R, Jacques D, Minot M, Rantell T, (2002) Macromolecular Materials and Engineering, 287:395–403

    Article  Google Scholar 

  18. Yoo HJ, Jung YC, Sahoo NG, Cho JW, (2006) Journal of Macromolecular Science, Part B Physics, 45:441-51

    Article  Google Scholar 

  19. Sahoo NG, Jung YC, Yoo HJ, Cho JW, (2006) Macromolecular Chemistry and Physics, 207:1773–80

    Article  Google Scholar 

  20. So HH, Cho JW, Sahoo NG, (2007) European Polymer Journal, 43:3750–6

    Article  Google Scholar 

  21. Hou H, Ge JJ, Zeng J, Li Q, Reneker DH, Greiner A, Cheng SZD, (2005) Chemistry of Materials, 17:967-73.

    Article  Google Scholar 

  22. Sen R, Zhao B, Perea D, Itkis ME, Hu H, Love J, Bekyarova E, Haddon RC, (2004) Nano Letters, 4:459-64.

    Article  Google Scholar 

  23. Zhang WD, Shen L, Phang IY, Liu T, (2004) Macromolecules, 37:256-9

    Article  Google Scholar 

  24. Lo´pez Manchado MA, Valentini L, Biagiotti J, Kenny JM, (2005) Carbon, 43:1499–505

    Article  Google Scholar 

  25. Safadi B, Andrews R, Grulke EA, (2002) Journal of Applied Polymer Science 2002, 84:2660–69

    Article  Google Scholar 

  26. Jun'ichi M, John MT, (2008) Macromolecules, 41:5974-77

    Article  Google Scholar 

  27. Zhang Q, Fang F, Zhao X, Li Y, Zhu M, Chen D, (2008) Journal of Physical Chemistry B, 112:12606-11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this paper

Cite this paper

Cheng, H., Sahoo, N., Li, L., Chan, S., Zhao, J. (2010). An innovative approach for the fabrication of highly conductive nanocomposites with different carbon. In: Hinduja, S., Li, L. (eds) Proceedings of the 36th International MATADOR Conference. Springer, London. https://doi.org/10.1007/978-1-84996-432-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-432-6_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-431-9

  • Online ISBN: 978-1-84996-432-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics