Skip to main content

From Topology to Phenotype in Protein–Protein Interaction Networks

  • Chapter
Book cover Network Science
  • 2548 Accesses

Abstract

We have recently witnessed an explosion in biological network data along with the development of computational approaches for their analyses. This new interdisciplinary research area is an integral part of systems biology, promising to provide new insights into organizational principles of life, as well as into evolution and disease. However, there is a danger that the area might become hindered by several emerging issues. In particular, there is typically a weak link between biological and computational scientists, resulting in the use of simple computational techniques of limited potential to explain these complex biological data. Hence, there is a danger that the community might view the topological features of network data as mere statistics, ignoring the value of the information contained in these data. This might result in the imposition of scientific doctrines, such as scale-free-centric (on the modelling side) and genome-centric (on the biological side) opinions onto this nascent research area. In this chapter, we take a network science perspective and present a brief, high-level overview of the area, commenting on possible challenges ahead. We focus on protein–protein interaction networks (PINs) in which nodes correspond to proteins in a cell and edges to physical bindings between the proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aiello, W., Chung, F., Lu, L.: A random graph model for power law graphs. Exp. Math. 10, 53–66 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Altschul, S.F., Gish, W., Miller, W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    Google Scholar 

  3. Artzy-Randrup, Y., Fleishman, S.J., Ben-Tal, N., Stone, L.: Comment on “Network motifs: Simple building blocks of complex networks” and “Superfamilies of evolved and designed networks”. Science 305, 1107 (2004)

    Article  Google Scholar 

  4. Bader, G.D., Hogue, C.W.V.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 4, 2 (2003)

    Article  Google Scholar 

  5. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  6. Barabási, A.L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Physica A 272, 173–197 (1999)

    Article  Google Scholar 

  7. Berg, J., Lassig, M.: Local graph alignment and motif search in biological networks. Proc. Natl. Acad. Sci. USA 101, 14689–14694 (2004)

    Article  Google Scholar 

  8. Berg, J., Lassig, M.: Cross-species analysis of biological networks by Bayesian alignment. Proc. Natl. Acad. Sci. USA 103(29), 10967–10972 (2006). doi:10.1073/pnas.0602294103

    Article  Google Scholar 

  9. Berger, S.I., Iyengar, R.: Network analyses in systems pharmacology. Bioinformatics 25, 2466–2472 (2009)

    Article  Google Scholar 

  10. Beyer, A., Bandyopadhyay, S., Ideker, T.: Integrating physical and genetic maps: from genomes to interaction networks. Nat. Rev. Genet. 8, 699–710 (2007)

    Article  Google Scholar 

  11. Bollobas, B.: Random Graphs. Academic Press, London (1985)

    MATH  Google Scholar 

  12. Boone, C., Bussey, H., Andrews, B.J.: Exploring genetic interactions and networks with yeast. Nat. Rev. Genet. 8, 437–449 (2007)

    Article  Google Scholar 

  13. Bornholdt, S., Ebel, H.: World-wide web scaling exponent from Simon’s 1955 model. Phys. Rev. E 64, 046401 (2001)

    Google Scholar 

  14. Brandstadt, A., Van Bang, L., Spinrad, J.P.: Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (1999)

    Book  Google Scholar 

  15. Chatr-aryamontri, A., Ceol, A., Peluso, D., Nardozza, A., Panni, S., Sacco, F., Tinti, M., Smolyar, A., Castagnoli, L., Vidal, M., Cusick, M., Cesareni, G.: VirusMINT: a viral protein interaction database. Nucleic Acids Res. 37, 669–673 (2009)

    Article  Google Scholar 

  16. Chua, H., Sung, W., Wong, L.: Exploiting indirect neighbors and topological weight to predict protein function from protein–protein interactions. Bioinformatics 22, 1623–1630 (2006)

    Article  Google Scholar 

  17. Collins, S., Schuldiner, M., Krogan, N., Weissman, J.: A strategy for extracting and analyzing large-scale quantitative epistatic interaction data. Genome Biol. 7, R63 (2006)

    Article  Google Scholar 

  18. Collins, S., Kemmeren, P., Zhao, X.C., Greenblatt, J., Spencer, F., Holstege, F., Weissman, J., Krogan, N.: Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol. Cell. Proteomics 6(3), 439–450 (2007)

    Google Scholar 

  19. de Silva, E., Stumpf, M.: Complex networks and simple models in biology. J. R. Soc. Interface 2, 419–430 (2005)

    Article  Google Scholar 

  20. de Silva, E., Thorne, T., Ingram, P., Agrafioti, I., Swire, J., Wiuf, C., Stumpf, M.: The effects of incomplete protein interaction data on structural and evolutionary inferences. BMC Biol. (2006). doi:10.1186/1741-7007-4-39

    Google Scholar 

  21. Erdős, P., Rényi, A.: On random graphs. Publ. Math. (Debr.) 6, 290–297 (1959)

    Google Scholar 

  22. Fields, S.: High-throughput two-hybrid analysis. the promise and the peril. FEBS J. 272, 5391–5399 (2005)

    Article  Google Scholar 

  23. Flannick, J., Novak, A., Balaji, S., Harley, H., Batzglou, S.: Graemlin general and robust alignment of multiple large interaction networks. Genome Res. 16(9), 1169–1181 (2006)

    Article  Google Scholar 

  24. Flannick, J., Novak, A.F., Do, C.B., Srinivasan, B.S., Batzoglou, S.: Automatic parameter learning for multiple network alignment. In: RECOMB, pp. 214–231 (2008)

    Google Scholar 

  25. Ganesan, A., Ho, H., Bodemann, B., Petersen, S., Aruri, J., Koshy, S., Richardson, Z., Le, L., Krasieva, T., Roth, M., Farmer, P., White, M.: Genome-wide siRNA-based functional genomics of pigmentation identifies novel genes and pathways that impact melanogenesis in human cells. PLoS Genet. 4(12), 1000298 (2008)

    Article  Google Scholar 

  26. Garey, M.R., Johnson, D.S.: Computers and Intractability–A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  27. Gavin, A.C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J.M., Michon, A.M., Cruciat, C.M., Remor, M., Hofert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.A., Copley, R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., Superti-Furga, G.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868), 141–147 (2002)

    Article  Google Scholar 

  28. Gavin, A., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., Rau, C., Jensen, L., Bastuck, S., Dumpelfeld, B., Edelmann, A., Heurtier, M., Hoffman, V., Hoefert, C., Klein, K., Hudak, M., Michon, A., Schelder, M., Schirle, M., Remor, M., Rudi, T., Hooper, S., Bauer, A., Bouwmeester, T., Casari, G., Drewes, G., Neubauer, G., Rick, J., Kuster, B., Bork, P., Russell, R., Superti-Furga, G.: Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084), 631–636 (2006)

    Article  Google Scholar 

  29. Giot, L., Bader, J., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., Hao, Y., Ooi, C., Godwin, B., Vitols, E., Vijayadamodar, G., Pochart, P., Machineni, H., Welsh, M., Kong, Y., Zerhusen, B., Malcolm, R., Varrone, Z., Collis, A., Minto, M., Burgess, S., McDaniel, L., Stimpson, E., Spriggs, F., Williams, J., Neurath, K., Ioime, N., Agee, M., Voss, E., Furtak, K., Renzulli, R., Aanensen, N., Carrolla, S., Bickelhaupt, E., Lazovatsky, Y., DaSilva, A., Zhong, J., Stanyon, C., Finley, R.J., White, K., Braverman, M., Jarvie, T., Gold, S., Leach, M., Knight, J., Shimkets, R., McKenna, M., Chant, J., Rothberg, J.: A protein interaction map of Drosophila melanogaster. Science 302(5651), 1727–1736 (2003)

    Article  Google Scholar 

  30. Goh, K.I., Kahng, B., Kim, D.: Hybrid network model: the protein and the protein family interaction networks. arXiv:q-bio.MN/0312009v2 (March 2004)

  31. Gunsalus, K.C., et al.: Predictive models of molecular machines involved in Caenorhadbitis elegans early embryogenesis. Nature 436, 861–865 (2005)

    Article  Google Scholar 

  32. Hakes, L., Pinney, J., Robertson, D.L., Lovell, S.C.: Protein–protein interaction networks and biology—what’s the connection? Nat. Biotechnol. 26(1), 69–72 (2008)

    Article  Google Scholar 

  33. Han, J.D.H., Dupuy, D., Bertin, N., Cusick, M.E., Vidal, M.: Effect of sampling on topology predictions of protein–protein interaction networks. Nat. Biotechnol. 23, 839–844 (2005)

    Article  Google Scholar 

  34. Harbison, C.T., Gordon, D.B., Lee, T.I., Rinaldi, N.J., Macisaac, K.D., Danford, T.W., Hannett, N.M., Tagne, J.B., Reynolds, D.B., Yoo, J., Jennings, E.G., Zeitlinger, J., Pokholok, D.K., Kellis, M., Rolfe, P.A., Takusagawa, K.T., Lander, E.S., Gifford, D.K., Fraenkel, E., Young, R.A.: Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004)

    Article  Google Scholar 

  35. Higham, D.J., Rašajski, M., Pržulj, N.: Fitting a geometric graph to a protein–protein interaction network. Bioinformatics 24(8), 1093–1099 (2008)

    Article  Google Scholar 

  36. Ho, Y., Gruhler, A., Heilbut, A., Bader, G.D., Moore, L., Adams, S.L., Millar, A., Taylor, P., Bennett, K., Boutilier, K., Yang, L., Wolting, C., Donaldson, I., Schandorff, S., Shewnarane, J., Vo, M., Taggart, J., Goudreault, M., Muskat, B., Alfarano, C., Dewar, D., Lin, Z., Michalickova, K., Willems, A.R., Sassi, H., Nielsen, P.A., Rasmussen, K.J., Andersen, J.R., Johansen, L.E., Hansen, L.H., Jespersen, H., Podtelejnikov, A., Nielsen, E., Crawford, J., Poulsen, V., Sorensen, B.D., Matthiesen, J., Hendrickson, R.C., Gleeson, F., Pawson, T., Moran, M.F., Durocher, D., Mann, M., Hogue, C.W., Figeys, D., Tyers, M.: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868), 180–183 (2002)

    Article  Google Scholar 

  37. Ito, T., Tashiro, K., Muta, S., Ozawa, R., Chiba, T., Nishizawa, M., Yamamoto, K., Kuhara, S., Sakaki, Y.: Toward a protein–protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc. Natl. Acad. Sci. USA 97(3), 1143–1147 (2000)

    Article  Google Scholar 

  38. Jeong, H., Mason, S.P., Barabási, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411(6833), 41–42 (2001)

    Article  Google Scholar 

  39. Kammeren, P., et al.: Protein interaction verification and functional annotation by integrated analysis of genome-scale data. Mol. Cell 9, 1133–1143 (2002)

    Article  Google Scholar 

  40. Keller, E.F.: Revisiting “scale-free” networks. BioEssays 27, 11060–11068 (2005)

    Google Scholar 

  41. Kelley, B.P., Bingbing, Y., Lewitter, F., Sharan, R., Stockwell, B.R., Ideker, T.: PathBLAST: a tool for alignment of protein interaction networks. Nucleic Acids Res. 32, 83–88 (2004)

    Article  Google Scholar 

  42. Kelley, R., Ideker, T.: Systematic interpretation of genetic interactions using protein networks. Nat. Biotechnol. 23, 561–566 (2005)

    Article  Google Scholar 

  43. Kellis, M., Birren, B.W., Lander, E.S.: Proof and evolutionary analysis of the ancient gene duplication in yeast Saccharomices cerevisiae. Nature 428, 617–624 (2004)

    Article  Google Scholar 

  44. King, A.D., Pržulj, N., JurisicaI.: Protein complex prediction via cost-based clustering. Bioinformatics 20(17), 3013–3020 (2004)

    Article  Google Scholar 

  45. Krogan, N., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., Li, J., Pu, S., Datta, N., Tikuisis, A., Punna, T., Peregrín-Alvarez, J., Shales, M., Zhang, X., Davey, M., Robinson, M., Paccanaro, A., Bray, J., Sheung, A., Beattie, B., Richards, D., Canadien, V., Lalev, A., Mena, F., Wong, P., Starostine, A., Canete, M., Vlasblom, J., Wu, S., Orsi, C., Collins, S., Chandran, S., Haw, R., Rilstone, J., Gandi, K., Thompson, N., Musso, G., St Onge, P., Ghanny, S., Lam, M., Butland, G., Altaf-Ul, A., Kanaya, S., Shilatifard, A., O’Shea, E., Weissman, J., Ingles, C., Hughes, T., Parkinson, J., Gerstein, M., Wodak, S., Emili, A., Greenblatt, J.: Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006)

    Article  Google Scholar 

  46. Kuchaiev, O., Pržulj, N.: Learning the structure of protein–protein interaction networks. In: Proc. of 2009 Pacific Symposium on Biocomputing (PSB) (2009)

    Google Scholar 

  47. Kuchaiev, O., Milenkovic, T., Memisevic, V., Hayes, W., Pržulj, N.: Topological network alignment uncovers biological function and phylogeny. Journal of the Royal Society Interface (2010). doi:10.1098/rsif.2010.0063

    Google Scholar 

  48. LaCount, D.J., Vignali, M., Chettier, R., Phansalkar, A., Bell, R., Hesselberth, J.R., Schoenfeld, L.W., Ota, I., Sahasrabudhe, S., Kurschner, C., Fields, S., Hughes, R.E.: A protein interaction network of the malaria parasite Plasmodium falciparum. Nature 438, 103–107 (2005)

    Article  Google Scholar 

  49. Lappe, M., Holm, L.: Unraveling protein interaction networks with near-optimal efficiency. Nat. Biotechnol. 22(1), 98–103 (2004)

    Article  Google Scholar 

  50. Li, L., Alderson, D., Tanaka, R., Doyle, J.C., Willinger, W.: Towards a theory of scale-free graphs: definition, properties, and implications (extended version). arXiv:cond-mat/0501169 (2005)

  51. Li, S., Armstrong, C., Bertin, N., Ge, H., Milstein, S., Boxem, M., Vidalain, P.O., Han, J.D., Chesneau, A., Hao, T., Goldberg, D.S., Li, N., Martinez, M., Rual, J.F., Lamesch, P., Xu, L., Tewari, M., Wong, S., Zhang, L., Berriz, G., Jacotot, L., Vaglio, P., Reboul, J., Hirozane-Kishikawa, T., Li, Q., Gabel, H., Elewa, A., Baumgartner, B., Rose, D., Yu, H., Bosak, S., Sequerra, R., Fraser, A., Mango, S., Saxton, W., Strome, S., van den Heuvel, S., Piano, F., Vandenhaute, J., Sardet, C., Gerstein, M., Doucette-Stamm, L., Gunsalus, K., Harper, J., Cusick, M., Roth, F., Hill, D., Vidal, M.: A map of the interactome network of the metazoan C. elegans. Science 303, 540–543 (2004)

    Article  Google Scholar 

  52. Liang, Z., Xu, M., Teng, M., Niu, L.: NetAlign: a web-based tool for comparison of protein interaction networks. Bioinformatics 22(17), 2175–2177 (2006). doi:10.1093/bioinformatics/btl287

    Article  Google Scholar 

  53. Lu, L., Xia, Y., Paccanaro, A., Yu, H., Gerstein, M.: Assessing the limits of genomic data integration for predicting protein networks. Genome Res. 15, 945–953 (2005)

    Article  Google Scholar 

  54. Milenković, T., Pržulj, N.: Uncovering biological network function via graphlet degree signatures. Cancer Inform. 6, 257–273 (2008)

    Google Scholar 

  55. Milenković, T., Memisević, V., Ganesan, A.K., Pržulj, N.: Systems-level cancer gene identification from protein interaction network topology applied to melanogenesis-related interaction networks. J. R. Soc. Interface (2009). doi:10.1098/rsif.2009.0192

    Google Scholar 

  56. Milenkovic, T., Ng, W.L., Hayes, W., Pržulj, N.: Optimal network alignment with graphlet degree vectors. Cancer Informatics 9, 121–137 (2010)

    Article  Google Scholar 

  57. Milo, R., Shen-Orr, S.S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)

    Article  Google Scholar 

  58. Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I., Sheffer, M., Alon, U.: Superfamilies of evolved and designed networks. Science 303, 1538–1542 (2004)

    Article  Google Scholar 

  59. Molloy, M., Reed, B.: A critical point of random graphs with a given degree sequence. Random Struct. Algorithms 6, 161–180 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  60. Molloy, M., Reed, B.: The size of the largest component of a random graph on a fixed degree sequence. Comb. Probab. Comput. 7, 295–306 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  61. Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., Singh, M.: Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21, 302–310 (2005)

    Article  Google Scholar 

  62. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  63. Newman, M.E.J., Watts, D.J.: Renormalization group analysis in the small-world network model. Phys. Lett. A 263, 341–346 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  64. Newman, M.E.J., Watts, D.J.: Scaling and percolation in the small-world network model. Phys. Rev. E 60, 7332–7342 (1999)

    Article  Google Scholar 

  65. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001)

    Article  Google Scholar 

  66. Paladugu, S., Zhao, S., Ray, A., Raval, A.: Mining protein networks for synthetic genetic interactions. BMC Bioinform. (2008). doi:10.1186/1471-2105-9-426

    Google Scholar 

  67. Parrish, J.R., Yu, J., Liu, G., Hines, J.A., Chan, J.E., Mangiola, B.A., Zhang, H., Pacifico, S., Fotouhi, F., DiRita, V.J., Ideker, T., Andrews, P., Finley, R.L. Jr.: A proteome-wide protein interaction map for Campylobacter jejuni. Genome Biol. 8, R130 (2007)

    Article  Google Scholar 

  68. Pastor-Satorras, R., Smith, E., Sole, R.V.: Evolving protein interaction networks through gene duplication. J. Theor. Biol. 222, 199–210 (2003)

    Article  MathSciNet  Google Scholar 

  69. Pennisi, E.: Modernizing the tree of life. Science 300, 1692–1697 (2003)

    Article  Google Scholar 

  70. Peri, S., Navarro, J.D., Kristiansen, T.Z., Amanchy, R., Surendranath, V., Muthusamy, B., Gandhi, T.K., Chandrika, K.N., Deshpande, N., Suresh, S., Rashmi, B.P., Shanker, K., Padma, N., Niranjan, V., Harsha, H.C., Talreja, N., Vrushabendra, B.M., Ramya, M.A., Yatish, A.J., Joy, M., Shivashankar, H.N., Kavitha, M.P., Menezes, M., Choudhury, D.R., Ghosh, N., Saravana, R., Chandran, S., Mohan, S., Jonnalagadda, C.K., Prasad, C.K., Kumar-Sinha, C., Deshpande, K.S., Pandey, A.: Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res. 32, 497–501 (2004). 1362-4962 Journal Article

    Article  Google Scholar 

  71. Pokholok, D.K., Harbison, C.T., Levine, S., Cole, M., Hannett, N.M., Lee, T.I., Bell, G.W., Walker, K., Rolfe, P.A., Herbolsheimer, E., Zeitlinger, J., Lewitter, F., Gifford, D.K., Young, R.A.: Geome-wide map of nucleosome acetylation and metylation in yeast. Cell 122, 517–527 (2005)

    Article  Google Scholar 

  72. Pržulj, N.: Biological network comparison using graphlet degree distribution. Bioinformatics 23, 177–183 (2007)

    Article  Google Scholar 

  73. Pržulj, N., Corneil, D.G., Jurisica, I.: Modeling interactome: Scale-free or geometric? Bioinformatics 20(18), 3508–3515 (2004)

    Article  Google Scholar 

  74. Pržulj, N., Corneil, D.G., Jurisica, I.: Efficient estimation of graphlet frequency distributions in protein–protein interaction networks. Bioinformatics 22(8), 974–980 (2006). doi:10.1093/bioinformatics/btl030

    Article  Google Scholar 

  75. Pržulj, N., Wigle, D., Jurisica, I.: Functional topology in a network of protein interactions. Bioinformatics 20(3), 340–348 (2004)

    Article  Google Scholar 

  76. Pržulj, N., Kuchaiev, O., Stevanovic, A., Hayes, W.: Geometric evolutionary dynamics of protein interaction networks. In: 2010 Pacific Symposium on Biocomputing (PSB) (2010)

    Google Scholar 

  77. Rain, J.D., Selig, L., De Reuse, H., Battaglia, V., Reverdy, C., Simon, S., Lenzen, G., Petel, F., Wojcik, J., Schachter, V., Chemama, Y., Labigne, A., Legrain, P.: The protein–protein interaction map of Helicobacter pylori. Nature 409, 211–215 (2001)

    Article  Google Scholar 

  78. Ratmann, O., Wiuf, C., Pinney, J.W.: From evidence to inference: probing the evolution of protein interaction networks. HFSP J. 3(5), 290–306 (2009)

    Article  Google Scholar 

  79. Rual, J.F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., Berriz, G.F., Gibbons, F.D., Dreze, M., Ayivi-Guedehoussou, N., Klitgord, N., Simon, C., Boxem, M., Milstein, S., Rosenberg, J., Goldberg, D.S., Zhang, L.V., Wong, S.L., Franklin, G., Li, S., Albala, J.S., Lim, J., Fraughton, C., Llamosas, E., Cevik, S., Bex, C., Lamesch, P., Sikorski, R.S., Vandenhaute, J., Zoghbi, H.Y., Smolyar, A., Bosak, S., Sequerra, R., Doucette-Stamm, L., Cusick, M.E., Hill, D.E., Roth, F.P., Vidal, M.: Towards a proteome-scale map of the human protein–protein interaction network. Nature 437, 1173–1178 (2005)

    Article  Google Scholar 

  80. Schwartz, A., Yu, J., Gardenour, K.R., Finley, R.L. Jr., Ideker, T.: Cost-effective strategies for completing the interactome. Nat. Methods 6(1), 55–61 (2009)

    Article  Google Scholar 

  81. Schwikowski, B., Uetz, P., Fields, A.: A network of protein–protein interactions in yeast. Nat. Biotechnol. 18, 1257–1261 (2000)

    Article  Google Scholar 

  82. Sharan, R., Ulitsky, I., Shamir, R.: Network-based prediction of protein function. Mol. Syst. Biol. 3(88), 1–13 (2007)

    Google Scholar 

  83. Sharan, R., Ideker, T., Kelley, B.P., Shamir, R., Karp, R.M.: Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data. In: Proceedings of the Eighth Annual International Conference on Computational Molecular Biology (RECOMB’04) (2004)

    Google Scholar 

  84. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network comparison. Nat. Biotechnol. 24(4), 427–433 (2006)

    Article  Google Scholar 

  85. Sharan, R., Ideker, T.: Protein networks in disease. Genome Res. 18, 644–652 (2008)

    Article  Google Scholar 

  86. Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64–68 (2002)

    Article  Google Scholar 

  87. Simon, H.A.: On a class of skew distribution functions. Biometrika 42, 425–440 (1955)

    MathSciNet  MATH  Google Scholar 

  88. Simonis, N., Rual, J.F., Carvunis, A.R., Tasan, M., Lemmens, I., Hirozane-Kishikawa, T., Hao, T., Sahalie, J.M., Venkatesan, K., Gebreab, F., Cevik, S., Klitgord, N., Fan, C., Braun, P., Li, N., Ayivi-Guedehoussou, N., Dann, E., Bertin, N., Szeto, D., Dricot, A., Yildirim, M.A., Lin, C., Smet, A.S.D., Kao, H.L., Simon, C., Smolyar, A., Ahn, J.S., Tewari, M., Boxem, M., Milstein, S., Yu, H., Dreze, M., Vandenhaute, J., Gunsalus, K.C., Cusick, M.E., Hill, D.E., Tavernier, J., Roth, F.P., Vidal, M.: Empirically controlled mapping of the Caenorhabditis elegans protein–protein interactome network. Nat. Methods 6(1), 47–54 (2009)

    Article  Google Scholar 

  89. Singh, R., Xu, J., Berger, B.: Pairwise global alignment of protein interaction networks by matching neighborhood topology. In: Research in Computational Molecular Biology, pp. 16–31. Springer, Berlin (2007)

    Chapter  Google Scholar 

  90. Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F., Goehler, H., Stroedicke, M., Zenkner, M., Schoenherr, A., Koeppen, S., Timm, J., Mintzlaff, S., Abraham, C., Bock, N., Kietzmann, S., Goedde, A., Toksoz, E., Droege, A., Krobitsch, S., Korn, B., Birchmeier, W., Lehrach, H., Wanker, E.: A human protein–protein interaction network: A resource for annotating the proteome. Cell 122, 957–968 (2005)

    Article  Google Scholar 

  91. Stumpf, M.P.H., Wiuf, C., May, R.M.: Subnets of scale-free networks are not scale-free: Sampling properties of networks. Proc. Natl. Acad. Sci. USA 102, 4221–4224 (2005)

    Article  Google Scholar 

  92. Tong, A.H.Y., Lesage, G., Bader, G.D., Ding, H., Xu, H., Xin, X., Young, J., Berriz, G.F., Brost, R.L., Chang, M., Chen, Y., Cheng, X., Chua, G., Friesen, H., Goldberg, D.S., Haynes, J., Humphries, C., He, G., Hussein, S., Ke, L., Krogan, N., Li, Z., Levinson, J.N., Lu, H., Menard, P., Munyana, C., Parsons, A.B., Ryan, O., Tonikian, R., Roberts, T., Sdicu, A.M., Shapiro, J., Sheikh, B., Suter, B., Wong, S.L., Zhang, L.V., Zhu, H., Burd, C.G., Munro, S., Sander, C., Rine, J., Greenblatt, J., Peter, M., Bretscher, A., Bell, G., Roth, F.P., Brown, G.W., Andrews, B., Bussey, H., Boone, C.: Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004)

    Article  Google Scholar 

  93. Uetz, P., Giot, L., Cagney, G., Mansfield, T.A., Judson, R.S., Knight, J.R., Lockshon, E., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., Conover, D., Kalbfleish, T., Vijayadamodar, G., Yang, M., Johnston, M., Fields, S., Rothberg, J.M.: A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000)

    Article  Google Scholar 

  94. Uetz, P., Dong, Y.A., Zeretzke, C., Atzler, C., Baiker, A., Berger, B., Rajagopala, S., Roupelieva, M., Rose, D., Fossum, E., Haas, J.: Herpesviral protein networks and their interaction with the human proteome. Science 311, 239–242 (2006)

    Article  Google Scholar 

  95. Vazquez, A., Flammini, A., Maritan, A., Vespignani, A.: Modeling of protein interaction networks. Complexus 1, 38–44 (2001)

    Google Scholar 

  96. Vazquez, A., Flammini, A., Maritan, A., Vespignani, A.: Global protein function prediction from protein–protein interaction networks. Nat. Biotechnol. 21, 697–700 (2003)

    Article  Google Scholar 

  97. Venkatesan, K., et al.: An empirical framework for binary interactome mapping. Nat. Methods 6(1), 83–90 (2009)

    Article  MathSciNet  Google Scholar 

  98. von Brunn, A., Teepe, C., Simpson, J.C., Pepperkok, R., Friedel, C.C., Zimmer, R., Roberts, R., Baric, R., Haas, J.: Analysis of intraviral protein–protein interactions of the SARS coronavirus ORFeome. PLoS ONE 2, e459 (2007)

    Article  Google Scholar 

  99. von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., Bork, P.: Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417(6887), 399–403 (2002)

    Article  Google Scholar 

  100. Wagner, A.: How the global structure of protein interaction networks evolves. Proc. R. Soc. Lond. B, Biol. Sci. 270, 457–466 (2003)

    Article  Google Scholar 

  101. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  102. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  103. Wodak, S., Pu, S., Vlasblom, J., Seraphin, B.: Challenges and rewards of interaction proteomics. Mol. Cell. Proteomics 8(1), 3–18 (2009)

    Article  Google Scholar 

  104. Wong, S., et al.: Combining biological networks to predict genetic interactions. Proc. Natl. Acad. Sci. USA 101, 15682–15687 (2004)

    Article  Google Scholar 

  105. Xenarios, I., Rice, D.W., Salwinski, L., Baron, M.K., Marcotte, E.M.., Eisenberg, D: DIP: the Database of Interacting Proteins. Nucleic Acids Res. 28(1), 289–291 (2000)

    Article  Google Scholar 

  106. Yeger-Lotem, E., Sattath, S., Kashtan, N., Itzkovitz, S., Milo, R., Pinter, R., Alon, U., Margalit, H.: Network motifs in integrated cellular networks of transcription-regulation and protein–protein interaction. Proc. Natl. Acad. Sci. USA 101(16), 5934–5939 (2004)

    Article  Google Scholar 

  107. Yildirim, M.A., et al.: Drug-target network. Nat. Biotechnol. 25, 1119–1126 (2007)

    Article  Google Scholar 

  108. Yu, H., et al.: High-quality binary protein interaction map of the yeast interactome networks. Science 322, 104–110 (2008)

    Article  Google Scholar 

  109. Zanzoni, A., Montecchi-Palazzi, L., Quondam, M., Ausiello, G., Helmer-Citterich, M., Cesareni, G.: MINT: A Molecular INTeraction database. FEBS Lett. 513(1), 135–140 (2002)

    Article  Google Scholar 

  110. Zaslavskiy, M., Bach, F., Vert, J.P.: Global alignment of protein–protein interaction networks by graph matching methods. Bioinformatics 25(12), 259–267 (2009)

    Article  Google Scholar 

  111. Zhang, L., et al.: Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J. Biol.. (2005). doi:10.1186/jbiol23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataša Pržulj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Pržulj, N. (2010). From Topology to Phenotype in Protein–Protein Interaction Networks. In: Estrada, E., Fox, M., Higham, D., Oppo, GL. (eds) Network Science. Springer, London. https://doi.org/10.1007/978-1-84996-396-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-396-1_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-395-4

  • Online ISBN: 978-1-84996-396-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics