Skip to main content
  • 3192 Accesses

Abstract

This chapter implements simulated annealing (SA) for updating of a finite-element-model using vibration data. This method was tested on a simple beam and an unsymmetrical H-shaped structure and was compared to a method that used the particle-swarm-optimization method (PSO). It was observed that, on average, the particle-swarm-optimization method gives more accurately updated finite elements than the simulated-annealing method. This is mainly due to the simplicity of its implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhmatskaya E, Bou-Rabee N, Reich S (2009) A Comparison of Generalized Hybrid Monte Carlo Methods With and Without Momentum Flip. J of Comput Phys 228:2256–2265

    Article  MATH  MathSciNet  Google Scholar 

  • Allemang RJ, Brown DL (1982) A Correlation Coefficient for Modal Vector Analysis. In: Proc of the 1st Int Modal Anal Conf:01–18

    Google Scholar 

  • Bazavov A, Berg BA, Zhou H (2009) Application of Biased Metropolis Algorithms: From Protons to Proteins. Math and Comput in Simul doi: 10.1016/j.matcom.2009.05.005

    Google Scholar 

  • Bedard M (2008) Optimal Acceptance Rates for Metropolis Algorithms: Moving beyond 0.234. Stoch Process and their Appl 118: 2198–2222

    Article  MATH  MathSciNet  Google Scholar 

  • Bisetty K, Corcho FJ, Canto J, Kruger HG, Perez JJ (2006) Simulated Annealing Study of the Pentacyclo-undecane Cage Amino Acid Tripeptides of the Type [Ac-X-Y-Z-NHMe]. J of Mol Struct: THEOCHEM 759:145–157

    Article  Google Scholar 

  • Briant O, Naddef D, Mounie G (2009) Greedy Approach and Multi-criteria Simulated Annealing for the Car Sequencing Problem. Eur J of Oper Res 191:993–1003

    Article  Google Scholar 

  • Bryan K, Cunningham P, Bolshkova N (2006) Application of Simulated Annealing to the Biclustering of Gene Expression Data. IEEE Trans on Inf Technol in Biomed 10519–525

    Google Scholar 

  • Chang Y (2006) An Innovative Approach for Demand Side Management - Optimal Chiller Loading by Simulated Annealing. Energy 31:1883–1896

    Article  Google Scholar 

  • Chang Y, Chen W, Lee C, Huang C (2006) Simulated Annealing Based Optimal Chiller Loading for Saving Energy. Energy Convers and Manag 47:2044–2058

    Article  Google Scholar 

  • Cosola E, Genovese K, Lamberti L, Pappalettere C (2008) A General Framework for Identification of Hyper-elastic Membranes with Moire Techniques and Multi-point Simulated Annealing. Intl J of Solids and Struct 45:6074–6099

    Article  Google Scholar 

  • Cretu N, Pop M (2009) Acoustic Behavior Design with Simulated Annealing. Comput Mater Sci 44:1312–1318

    Article  Google Scholar 

  • Curran JM (2008) A MCMC Method for Resolving Two Person Mixtures. Sci and Justice 48:168–177

    Article  Google Scholar 

  • Dafflon B, Irving J, Holliger K (2009) Simulated-annealing-based Conditional Simulation for the Local-scale Characterization of Heterogeneous Aquifers. J of Appl Geophys 68:60–70

    Article  Google Scholar 

  • Das A, Chakrabarti BK (2005) Quantum Annealing and Related Optimization Methods. Lect Notes in Phys 679, Springer, Heidelberg

    MATH  Google Scholar 

  • De Vicente J, Lanchares J, Hermida R (2003) Placement by Thermodynamic Simulated Annealing. Phys Lett A 317:415–423

    Article  MATH  Google Scholar 

  • Dunn WL, Shultis JK (2009) Monte Carlo Methods for Design and Analysis of Radiation Detectors. Radiat Phys and Chem 78:852–858

    Article  Google Scholar 

  • Friswell MI, Mottershead JE (1995) Finite Element Model Updating in Structural Dynamics. Kluwer Academic Publishers Group, Norwell

    MATH  Google Scholar 

  • Gallagher K, Charvin K, Nielsen S, Sambridge M, Stephenson J (2009) Markov Chain Monte Carlo (MCMC) Sampling Methods to Determine Optimal Models, Model Resolution and Model Choice for Earth Science Problems. Marine and Pet Geol 26:525–535

    Article  Google Scholar 

  • Gauchere C, Campillo F, Misson L, Guiot J, Boreux JJ (2008) Parameterization of a Process-based Tree-growth Model: Comparison of Optimization. MCMC and Particle Filtering Algorithms. Environ Model and Softw 23:1280–1288

    Article  Google Scholar 

  • Gomes AM, Oliveira JF (2006) Solving Irregular Strip Packing Problems by Hybridising Simulated Annealing and Linear Programming. Eur J of Oper Res 171:811–829

    Article  MATH  Google Scholar 

  • He R, Hwang S (2006) Damage Detection by an Adaptive Real-parameter Simulated Annealing Genetic Algorithm. Comput and Struct 84:2231–2243

    Article  Google Scholar 

  • Jacquier E, Johannes M, Polson N (2007) MCMC Maximum Likelihood for Latent State Models. J of Econom 137:615–640

    Article  MathSciNet  Google Scholar 

  • Jia Y, Zhang C (2009) Front-view Vehicle Detection by Markov Chain Monte Carlo Method. Pattern Recognit 42:313–321

    Article  MATH  MathSciNet  Google Scholar 

  • Jing L, Vadakkepat P (2009) Interacting MCMC Particle Filter for Tracking Maneuvering Target. Digit Signal Process doi: 10.1016/j.dsp.2009.08.011

    Google Scholar 

  • Jun SC, George JS, Kim W, Pare-Blagoev J, Plis S, Ranken DM, Schmidt DM (2008) Bayesian Brain Source Imaging Based on Combined MEG/EEG and fMRI Using MCMC. NeuroImage 40:1581–1594

    Article  Google Scholar 

  • Kannan S, Zacharias M (2009) Simulated Annealing Coupled Replica Exchange Molecular Dynamics–An Efficient Conformational Sampling Method. J of Struct Biology 166:288–294

    Article  Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by Simulated Annealing. Sci, New Ser 220:671–680

    MathSciNet  Google Scholar 

  • Lai Y (2009) Adaptive Monte Carlo Methods for Matrix Equations with Applications. J of Comput and Appl Math 231:705–714

    Article  MATH  Google Scholar 

  • Lamberti L (2008) An Efficient Simulated Annealing Algorithm for Design Optimization of Truss Structures. Comput and Struct 86:1936–1953

    Article  Google Scholar 

  • Levin RI, Lieven NAJ (1998) Dynamic Finite Element Model Updating Using Simulated Annealing and Genetic Algorithms. Mech Syst and Signal Process 12:91–120

    Article  Google Scholar 

  • Liesenfeld R, Richard J (2008) Improving MCMC, Using Efficient Importance Sampling. Comput Statistics and Data Anal 53:272–288

    Article  MATH  Google Scholar 

  • Liu X, Jiang W, Jakana J, Chiu W (2007) Averaging Tens to Hundreds of Icosahedral Particle Images to Resolve Protein Secondary Structure Elements Using a Multi-path Simulated Annealing Optimization Algorithm. J of Struct Biology 160:11–27

    Article  Google Scholar 

  • Liu X, Newsome D, Coppens M (2009) Dynamic Monte Carlo Simulations of Binary Selfdiffusion in ZSM-5. Microporous and Mesoporous Mater 125:149–159

    Article  Google Scholar 

  • Lombardi MJ (2007) Bayesian Inference for [Alpha]-Stable Distributions: A Random Walk MCMC Approach. Comput Statistics and Data Anal 51:2688–2700

    Article  MATH  MathSciNet  Google Scholar 

  • Malve O, Laine M, Haario H, Kirkkala T, Sarvala J (2007) Bayesian Modelling of Algal Mass Occurrences - Using Adaptive MCMC Methods with a Lake Water Quality Model. Environ Model and Softw 22:966–977

    Article  Google Scholar 

  • Marwala T (2005) Finite Element Model Updating Using Particle Swarm Optimization. Int J of Eng Simul 6:25–30

    Google Scholar 

  • Marwala T (1997) A Multiple Criterion Updating Method for Damage Detection on Structures. Master’s Thesis, University of Pretoria

    Google Scholar 

  • Marwala T, Heyns PS (1998) A Multiple Criterion Method for Detecting Damage on Structures, AIAA J 195:1494–1501

    Article  Google Scholar 

  • Mathe P, Novak E (2007) Simple Monte Carlo and the Metropolis Algorithm. J of Complex 23:673–696

    Article  MATH  MathSciNet  Google Scholar 

  • McClarren RG, Urbatsch TJ (2009) A Modified Implicit Monte Carlo Method for Timedependent Radiative Transfer with Adaptive Material Coupling. J of Comput Phys 228:5669–5686

    Article  MATH  MathSciNet  Google Scholar 

  • McGookin EW, Murray-Smith DJ (2006) Submarine Manoeuvring Controllers' Optimisation Using Simulated Annealing and Genetic Algorithms. Control Eng Pract 14:01–15

    Article  Google Scholar 

  • Meer K (2007) Simulated Annealing versus Metropolis for a TSP Instance. Inf Process Lett 104:216–219

    Article  MATH  MathSciNet  Google Scholar 

  • Metropolis N, Rosenbluth A, Rosenbluth M (1953) A. Teller, and E. Teller, Equation of State Calculations by Fast Computing Machines. The J of Chem Phys 21:1087–1092

    Article  Google Scholar 

  • Meyer R, Cai B, Perron F (2008) Adaptive Rejection Metropolis Sampling Using Lagrange Interpolation Polynomials of Degree 2. Comput Statistics and Data Anal 52:3408–3423

    Article  MATH  MathSciNet  Google Scholar 

  • Moita JMS, Correia VMF, Martins PG, Soares CMM, Soares CAM (2006) Optimal Design in Vibration Control of Adaptive Structures Using a Simulated Annealing Algorithm. Compos Struct 75:79–87

    Article  Google Scholar 

  • Moskovkin P, Hou M (2007) Metropolis Monte Carlo Predictions of Free Co-Pt Nanoclusters. J of Alloy and Compd 434–435:550–554

    Article  Google Scholar 

  • Naderi B, Zandieh M, Khaleghi A, Balagh G, Roshanaei V (2009) An Improved Simulated Annealing for Hybrid Flowshops with Sequence-dependent Setup and Transportation Times to Minimize Total Completion Time and Total Tardiness. Expert Syst with Appl 36:9625–9633

    Article  Google Scholar 

  • Nocedal J, Wright S (2000) Numerical Optimization. Springer, Heidelberg

    Google Scholar 

  • Ogura T, Sato C (2006) A Fully Automatic 3D Reconstruction Method Using Simulated Annealing Enables Accurate Posterioric Angular Assignment of Protein Projections. J of Struct Biology 156:371–386

    Article  Google Scholar 

  • Oliveira RG, Schneck E, Quinn BE, Konovalov OV, Brandenburg K, Seydel U, Gill T, Hanna CB, Pink DA, Tanaka M (2009) Physical Mechanisms of Bacterial Survival Revealed by Combined Grazing-incidence X-ray Scattering and Monte Carlo Simulation. Comptes Rendus Chimie 12:209–217

    Article  Google Scholar 

  • Paya-Zaforteza I, Yepes V, Hospitaler A, Gonzalez-Vidosa F (2009) CO2-Optimization of Reinforced Concrete Frames by Simulated Annealing. Eng Struct 31:1501–1508

    Article  Google Scholar 

  • Pedamallu CS, Ozdamar L (2008) Investigating a Hybrid Simulated Annealing and Local Search Algorithm for Constrained Optimization. Eur J of Oper Res 185:1230–1245

    Article  MATH  MathSciNet  Google Scholar 

  • Rahmati M, Modarress H (2009) Nitrogen Adsorption on Nanoporous Zeolites Studied by Grand Canonical Monte Carlo Simulation. J of Mol Struct: THEOCHEM 901:110–116

    Article  Google Scholar 

  • Ratick S, Schwarz G (2009) Monte Carlo Simulation. In: Kitchin R, Thrift N (ed) International Encyclopedia of Human Geography, Elsevier, Oxford

    Google Scholar 

  • Sacco WF, Lapa CMF, Pereira CMNA, Filho HA (2008) A Metropolis Algorithm Applied to a Nuclear Power Plant Auxiliary Feedwater System Surveillance Tests Policy Optimization. Prog in Nucl Energy 50:15–21

    Article  Google Scholar 

  • Salamon P, Sibani P, Frost R (2002) Facts, Conjectures, and Improvements for Simulated Annealing (SIAM Monographs on Mathematical Modeling and Computation). Society for Industrial and Applied Mathematic Publishers, Philadelphia

    MATH  Google Scholar 

  • Salazar R and Toral R (2006) Simulated Annealing Using Hybrid Monte Carlo. arXiv:condmat/9706051

    Google Scholar 

  • Sonmez FO (2007) Shape Optimization of 2D Structures Using Simulated Annealing. Comput Methods in Appl Mech and Eng 196:3279–3299

    Article  MATH  Google Scholar 

  • Tiana G, Sutto L, Broglia RA (2007) Use of the Metropolis Algorithm to Simulate the Dynamics of Protein Chains. Physica A: Statistical Mech and its Appl 380:241–249

    Article  Google Scholar 

  • van Laarhoven PJ, Aarts EH (1997) Simulated Annealing: Theory and Applications (Mathematics and Its Applications). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Weinberger E (1990) Correlated and Uncorrelated Fitness Landscapes and How to Tell the Difference. Biological Cybernet 63:325–336

    Article  MATH  Google Scholar 

  • Weizhong AN, Fengjuan YU, Dong F, Yangdong HU (2008) Simulated Annealing Approach to the Optimal Synthesis of Distillation Column with Intermediate Heat Exchangers. Chin J of Chem Eng 16:30–35

    Article  Google Scholar 

  • Wei-Zhong A, Xi-Gang Y (2009) A Simulated Annealing-based Approach to the Optimal Synthesis of Heat-integrated Distillation Sequences. Comput and Chem Eng 33:199–212

    Article  Google Scholar 

  • Xia J, Liu L, Xue J, Wang Y, Wu L (2009) Modeling of Radiation-induced Bystander Effect Using Monte Carlo Methods. Nucl Instrum and Methods in Phys Res Section B: Beam Interact with Mater and Atoms 267:1015–1018

    Google Scholar 

  • Zhao H, Zheng C (2009) Correcting the Multi-Monte Carlo Method for Particle Coagulation. Powder Technology 193:120–123

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2010). Finite-element-model Updating Using Simulated Annealing. In: Finite-element-model Updating Using Computional Intelligence Techniques. Springer, London. https://doi.org/10.1007/978-1-84996-323-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-323-7_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-322-0

  • Online ISBN: 978-1-84996-323-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics