Skip to main content

Breast Cancer May Originate In Utero: The Importance of the Intrauterine Environment for Breast Cancer Development

  • Chapter
  • First Online:
Breast Cancer
  • 2073 Accesses

Abstract

Breast cancer is the most common female cancer worldwide and the second leading cause of cancer death (after lung cancer) (American Cancer Society 2009). The incidence of breast cancer varies four- to fivefold across countries, is the highest in Europe and North America, and the lowest in Asia (Ferlay et al. 2001). Breast cancer incidence has been on the rise since the 1930s, with more dramatic increase in the 1980s (White et al. 1990; Devesa et al. 1994). The incidence of breast cancer in the US stabilized from 2001 to 2003 and started to decline in 2003, possibly due, in part, to the reduced use of hormone replacement therapy (Howe et al. 2006). It was projected that in 2010, 207,090 women would develop invasive breast cancer and 39,840 women will die from the disease (American Cancer Society 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adami H, Hunter D, Trichopoulos D (2002) Textbook of cancer epidemiology. Oxford University Press, New York, pp 301–373

    Google Scholar 

  • Allan GJ, Flint DJ, Patel K (2001) Insulin-like growth factor axis during embryonic development. Reproduction 122:31–39

    CAS  PubMed  Google Scholar 

  • Allen NE, Roddam AW, Allen DS, Fentiman IS, Dos Santos Silva I, Peto J, Holly JM, Key TJ (2005) A prospective study of serum insulin-like growth factor-I (IGF-I), IGF-II, IGF-binding protein-3 and breast cancer risk. Br J Cancer 92:1283–1287

    CAS  PubMed  Google Scholar 

  • American Cancer Society (2010) Cancer facts & figures 2009. American Cancer Society, Atlanta, http://www.cancer.org/Cancer/BreastCancer/OverviewGuide/breast-cancer-overview-key-statistics. Last Accessed 12 Sep 2010

    Google Scholar 

  • Anderson E, Clarke RB, Howell A (1998) Estrogen responsiveness and control of normal human breast proliferation. J Mammary Gland Biol Neoplasia 3:23–35

    CAS  PubMed  Google Scholar 

  • Baldwin S, Chung M, Chard T, Wang HS (1993) Insulin-like growth factor-binding protein-1, glucose tolerance and fetal growth in human pregnancy. J Endocrinol 136:319–325

    CAS  PubMed  Google Scholar 

  • Belfiore A, Frittitta L, Costantino A, Frasca F, Pandini G, Sciacca L, Goldfine ID, Vigneri R (1996) Insulin receptors in breast cancer. Ann NY Acad Sci 784:173–188

    CAS  PubMed  Google Scholar 

  • Bennett A, Wilson DM, Liu F, Nagashima R, Rosenfeld RG, Hintz RL (1983) Levels of insulin-like growth factors I and II in human cord blood. J Clin Endocrinol Metab 57:609–612

    CAS  PubMed  Google Scholar 

  • Brinkworth MH (2000) Paternal transmission of genetic damage: findings in animals and humans. Int J Androl 23:123–135

    CAS  PubMed  Google Scholar 

  • Casey ML, MacDonald PC (1992) Alterations in steroid production by the human placenta. In: Pasqualini JR, Scholler R (eds) Hormones and fetal pathophysiology. Marcel Dekker, New York, p 251

    Google Scholar 

  • Chiesa C, Osborn JF, Haass C, Natale F, Spinelli M, Scapillati E, Spinelli A, Pacifico L (2008) Ghrelin, leptin, IGF-1, IGFBP-3, and insulin concentrations at birth: is there a relationship with fetal growth and neonatal anthropometry. Clin Chem 54:550–558

    CAS  PubMed  Google Scholar 

  • Choi JY, Lee KM, Park SK, Nah DY, Ahn SH, Yoo KY, Kang D (2005) Association of paternal age at birth and the risk of breast cancer in offspring: a case control study. BMC Cancer 5:143

    PubMed  Google Scholar 

  • Clark PM (1999) Assays for insulin, proinsulin(s) and C-peptide. Ann Clin Biochem 36:541–564

    CAS  PubMed  Google Scholar 

  • Clarke RB, Howell A, Anderson E (1997) Type I insulin-like growth factor receptor gene expression in normal human breast tissue treated with oestrogen and progesterone. Br J Cancer 75:251–257

    CAS  PubMed  Google Scholar 

  • Csapo AI, Pulkkinen MO, Wiest WG (1973) Effects of luteectomy and progesterone replacement therapy in early pregnant patients. Am J Obstet Gynecol 115:759–765

    CAS  PubMed  Google Scholar 

  • Devesa SS, Grauman DJ, Blot WJ (1994) Recent cancer patterns among men and women in the United States: clues for occupational research. J Occup Med 36:832–841

    CAS  PubMed  Google Scholar 

  • dos Silva IS, De Stavola B, McCormack V (2008) Collaborative Group on Pre-Natal Risk Factors and Subsequent Risk of Breast Cancer. Birth size and breast cancer risk: re-analysis of individual participant data from 32 studies. PLoS Med 5:e193

    Google Scholar 

  • Ekbom A, Thurfjell E, Hsieh CC, Trichopoulos D, Adami HO (1995) Perinatal characteristics and adult mammographic patterns. Int J Cancer 61:177–180

    CAS  PubMed  Google Scholar 

  • Ekbom A, Hsieh CC, Lipworth L, Adami HO, Trichopoulos D (1997) Intrauterine environment and breast cancer risk in women: a population-based study. J Natl Cancer Inst 89:71–76

    CAS  PubMed  Google Scholar 

  • Ekbom A, Erlandsson G, Hsieh C, Trichopoulos D, Adami HO, Cnattingius S (2000) Risk of breast cancer in prematurely born women. J Natl Cancer Inst 92:840–841

    CAS  PubMed  Google Scholar 

  • Ferlay J, Bray F, Pisani P, Parkin DM (2001) GLOBOCAN 2000: cancer incidence, mortality and prevalence worldwide. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • Forman MR, Cantwell MM, Ronckers C, Zhang Y (2005) Through the looking glass at early-life exposures and breast cancer risk. Cancer Invest 23:609–624

    PubMed  Google Scholar 

  • Fowden AL (2003) The insulin-like growth factors and feto-placental growth. Placenta 24:803–812

    CAS  PubMed  Google Scholar 

  • Gallager HS, Martin JE (1969) The study of mammary carcinoma by mammography and whole organ sectioning. Cancer 23:855–873

    CAS  PubMed  Google Scholar 

  • Giudice LC, de Zegher F, Gargosky SE, Dsupin BA, de las Fuentes L, Fuentes L, Crystal RA, Hintz RL, Rosenfeld RG (1995) Insulin-like growth factors and their binding proteins in the term and preterm human fetus and neonate with normal and extremes of intrauterine growth. J Clin Endocrinol Metab 80:1548–1555

    CAS  PubMed  Google Scholar 

  • Glaser RL, Jabs EW (2004) Dear old dad. Sci Aging Knowledge Environ 2004:re1

    PubMed  Google Scholar 

  • Gluckman PD, Hanson MA (2004) Maternal constraint of fetal growth and its consequences. Semin Fetal Neonatal Med 9:419–425

    PubMed  Google Scholar 

  • Gluckman PD, Johnson-Barrett JJ, Butler JH, Edgar BW, Gunn TR (1983) Studies of insulin-like growth factor-I and -II by specific radioligand assays in umbilical cord blood. Clin Endocrinol (Oxf) 19:405–413

    CAS  Google Scholar 

  • Gonzalez MC, Reyes H, Arrese M, Figueroa D, Lorca B, Andresen M, Segovia N, Molina C, Arce S (1989) Intrahepatic cholestasis of pregnancy in twin pregnancies. J Hepatol 9:84–90

    CAS  PubMed  Google Scholar 

  • Grassi AE, Giuliano MA (2000) The neonate with macrosomia. Clin Obstet Gynecol 43:340–348

    CAS  PubMed  Google Scholar 

  • Greenwald P, Barlow JJ, Nasca PC, Burnett WS (1971) Vaginal cancer after maternal treatment with synthetic estrogens. N Engl J Med 285:390–392

    CAS  PubMed  Google Scholar 

  • Grønbaek H, Flyvbjerg A, Mellemkjaer L, Tjønneland A, Christensen J, Sørensen HT, Overvad K (2004) Serum insulin-like growth factors, insulin-like growth factor binding proteins, and breast cancer risk in postmenopausal women. Cancer Epidemiol Biomarkers Prev 13:1759–1764

    PubMed  Google Scholar 

  • Hamilton BE, Ventura SJ, Martin JA, Sutton PD (2006) Final births for 2004. Health E-stats. National Center for Health Statistics, Hyattsville, Released 6 July 2006

    Google Scholar 

  • Hankinson SE, Schernhammer ES (2003) Insulin-like growth factor and breast cancer risk: evidence from observational studies. Breast Dis 17:27–40

    CAS  PubMed  Google Scholar 

  • Hatch EE, Palmer JR, Titus-Ernstoff L, Noller KL, Kaufman HR, Mittendorf R, Robboy SJ, Hyer M, Cowan CN, Colton T, Hartge P, Hoover RN (1998) Cancer risk in women exposed to diethylstilbestrol in utero. JAMA 280:630–634

    CAS  PubMed  Google Scholar 

  • Hemminki K, Kyyronen P (1999) Parental age and risk of sporadic and familial cancer in offspring: implications for germ cell mutagenesis. Epidemiology 10:747–751

    CAS  PubMed  Google Scholar 

  • Hill DJ (1990) Relative abundance and molecular size of immunoreactive insulin-like growth factors I and II in human fetal tissues. Early Hum Dev 21:49–58

    CAS  PubMed  Google Scholar 

  • Hill DJ, Petrik J, Arany E (1998) Growth factors and the regulation of fetal growth. Diab Care 21(Suppl 2):B60–B69

    Google Scholar 

  • Hodgson ME, Newman B, Millikan RC (2004) Birth weight, parental age, birth order and breast cancer risk in African-American and white women: a population-based case–control study. Breast Cancer Res 6:R656–R667

    PubMed  Google Scholar 

  • Holdaway IM, Mason BH, Lethaby AE, Singh V, Harman JE, MacCormick M, Civil ID (1999) Serum levels of insulin-like growth factor binding protein-3 in benign and malignant breast disease. Aust N Z J Surg 69:495–500

    CAS  PubMed  Google Scholar 

  • Holland R, Velling SH, Mravunac M, Hendricks JH (1985) Histologic multifocality of Tis, T1-2 breast carcinomas: implications for clinical trials of breast conserving surgery. Cancer 56:979–990

    CAS  PubMed  Google Scholar 

  • Howe HL, Wu X, Ries LA, Cokkinides V, Ahmed F, Jemal A, Miller B, Williams M, Ward E, Wingo PA, Ramirez A, Edwards BK (2006) Annual report to the nation on the status of cancer, 1975–2003, featuring cancer among U.S. Hispanic/Latino populations. Cancer 107:1711–1742

    PubMed  Google Scholar 

  • Innes K, Byers T, Schymura M (2000) Birth characteristics and subsequent risk for breast cancer in very young women. Am J Epidemiol 152:1121–1128

    CAS  PubMed  Google Scholar 

  • Janerich DT, Hayden CL, Thompson WD, Selenskas SL, Mettlin C (1989) Epidemiologic evidence of perinatal influence in the etiology of adult cancers. J Clin Epidemiol 42:151–157

    CAS  PubMed  Google Scholar 

  • Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16:3–34

    CAS  PubMed  Google Scholar 

  • Jung A, Schuppe HC, Schill WB (2003) Are children of older fathers at risk for genetic disorders? Andrologia 35:191–199

    CAS  PubMed  Google Scholar 

  • Kaaks R, Lundin E, Rinaldi S, Manjer J, Biessy C, Söderberg S, Lenner P, Janzon L, Riboli E, Berglund F, Hallmans G (2002) Prospective study of IGF-I, IGF binding proteins, and breast cancer risk, in northern and southern Sweden. Cancer Causes Control 13:307–316

    PubMed  Google Scholar 

  • Kappel B, Hansen K, Moller J, Faaborg-Andersen J (1985) Human placental lactogen and dU-estrogen levels in normal twin pregnancies. Acta Genet Med Gemellol (Roma) 34:59–65

    CAS  Google Scholar 

  • Kato H, Yoshimoto Y, Schull WJ (1989) Risk of cancer among children exposed to atomic bomb radiation in utero: a review. IARC Sci Publ 96:365–374

    PubMed  Google Scholar 

  • Kenney NJ, Dickson RB (1996) Growth factor and sex steroid interactions in breast cancer. J Mammary Gland Biol Neoplasia 1:189–198

    CAS  PubMed  Google Scholar 

  • Klauwer D, Blum WF, Hanitsch S, Rascher W, Lee PD, Kiess W (1997) IGF-I, IGF-II, free IGF-I and IGFBP-1, -2 and -3 levels in venous cord blood: relationship to birthweight, length and gestational age in healthy newborns. Acta Paediatr 86:826–833

    CAS  PubMed  Google Scholar 

  • Kordon EC, Smith GH (1998) An entire functional mammary gland may comprise the progeny from a single cell. Development 125:1921–1930

    CAS  PubMed  Google Scholar 

  • Laban C, Bustin SA, Jenkins PJ (2003) The GH-IGF-I axis and breast cancer. Trends Endocrinol Metab 14:28–34

    CAS  PubMed  Google Scholar 

  • Land CE (1995) Studies of cancer and radiation dose among atomic bomb survivors. The example of breast cancer. JAMA 274:402–407

    CAS  PubMed  Google Scholar 

  • Lassarre C, Hardouin S, Daffos F, Forestier F, Frankenne F, Binoux M (1991) Serum insulin-like growth factors and insulin-like growth factor binding proteins in the human fetus. Relationships with growth in normal subjects and in subjects with intrauterine growth retardation. Pediatr Res 29:219–225

    CAS  PubMed  Google Scholar 

  • Lauritzen C, Lehmann WD (1966) The importance of steroid hormones in the pathogenesis of hyperbilirubinemia and neonatal jaundice. Z Kinderheilkd 95:143–154

    CAS  PubMed  Google Scholar 

  • Law LW (1940) The production of tumors by injection of a carcinogen into the amniotic fluid of mice. Science 91:96–97

    CAS  PubMed  Google Scholar 

  • Le Marchand L, Kolonel LN, Myers BC, Mi MP (1988) Birth characteristics of premenopausal women with breast cancer. Br J Cancer 57:437–439

    PubMed  Google Scholar 

  • Le Roith D (1997) Seminars in medicine of the Beth Israel Deaconess Medical Center. Insulin-like growth factors. N Engl J Med 336:633–640

    PubMed  Google Scholar 

  • Li BD, Khosravi MJ, Berkel HJ, Diamandi A, Dayton MA, Smith M, Yu H (2001) Free insulin-like growth factor-I and breast cancer risk. Int J Cancer 91:736–739

    CAS  PubMed  Google Scholar 

  • Liehr JG (2000) Is estradiol a genotoxic mutagenic carcinogen? Endocr Rev 21:40–54

    CAS  PubMed  Google Scholar 

  • Lindberg BS, Johansson ED, Nilsson BA (1974) Plasma levels of nonconjugated oestrone, oestradiol-17b and oestriol during uncomplicated pregnancy. Acta Obstet Gynecol Scand Suppl 32:21–36

    CAS  PubMed  Google Scholar 

  • Long PA, Abell DA, Beischer NA (1979) Fetal growth and placental function assessed by urinary estriol excretion before the onset of pre-eclampsia. Am J Obstet Gynecol 135:344–347

    CAS  PubMed  Google Scholar 

  • Maccoby EE, Doering CH, Nagy Jacklin C, Kraemer H (1979) Concentrations of sex hormones in umbilical-cord blood: their relation to sex and birth order of infants. Child Dev 50:632–642

    CAS  PubMed  Google Scholar 

  • Macmahon B (1962) Prenatal x-ray exposure and childhood cancer. J Natl Cancer Inst 28:1173–1191

    CAS  PubMed  Google Scholar 

  • Madigan MP, Ziegler RG, Benichou J, Byrne C, Hoover RN (1995) Proportion of breast cancer cases in the United States explained by well-established risk factors. J Natl Cancer Inst 87:1681–1685

    CAS  PubMed  Google Scholar 

  • Mathieu MC, Clark GM, Allred DC, Goldfine ID, Vigneri R (1997) Insulin receptor expression and clinical outcome in node-­negative breast cancer. Proc Assoc Am Physicians 109:565–571

    CAS  PubMed  Google Scholar 

  • McCormack VA, dos Santos Silva I, De Stavola BL, Mohsen R, Leon DA, Lithell HO (2003) Fetal growth and subsequent risk of breast cancer: results from long term follow up of Swedish cohort. BMJ 326:248

    CAS  PubMed  Google Scholar 

  • McIntyre HD, Zeck W, Russell A (2009) Placental growth hormone, fetal growth and the IGF axis in normal and diabetic pregnancy. Curr Diab Rev 5:185–189

    CAS  Google Scholar 

  • Michels KB, Xue F (2006) Role of birthweight in the etiology of breast cancer. Int J Cancer 119:2007–2025

    CAS  PubMed  Google Scholar 

  • Mogren I, Damber L, Tavelin B, Hogberg U (1999) Characteristics of pregnancy and birth and malignancy in the offspring (Sweden). Cancer Causes Control 10:85–94

    CAS  PubMed  Google Scholar 

  • Morison IM, Becroft DM, Taniguchi T, Woods CG, Reeve AE (1996) Somatic overgrowth associated with overexpression of insulin-like growth factor II. Nat Med 2:311–316

    CAS  PubMed  Google Scholar 

  • Mucci LA, Lagiou P, Tamimi RM, Hsieh CC, Adami HO, Trichopoulos D (2003) Pregnancy estriol, estradiol, progesterone and prolactin in relation to birth weight and other birth size variables (United States). Cancer Causes Control 14:311–318

    PubMed  Google Scholar 

  • Nichols HB, Trentham-Dietz A, Sprague BL, Hampton JM, Titus-Ernstoff L, Newcomb PA (2008) Effects of birth order and maternal age on breast cancer risk: modification by whether women had been breast-fed. Epidemiology 19:417–423

    PubMed  Google Scholar 

  • Oleszczuk JJ, Cervantes A, Kiely JL, Keith DM, Keith LG (2001) Maternal race/ethnicity and twinning rates in the United States, 1989–1991. J Reprod Med 46:550–557

    CAS  PubMed  Google Scholar 

  • Ong K, Kratzsch J, Kiess W, Costello M, Scott C, Dunger D (2000) Size at birth and cord blood levels of insulin, insulin-like growth factor I (IGF-I), IGF-II, IGF-binding protein-1 (IGFBP-1), IGFBP-3, and the soluble IGF-II/mannose-6-phosphate receptor in term human infants. The ALSPAC Study Team. Avon Longitudinal Study of Pregnancy and Childhood. J Clin Endocrinol Metab 85:4266–4269

    CAS  PubMed  Google Scholar 

  • Osorio M, Torres J, Moya F, Pezzullo J, Salafia C, Baxter R, Schwander J, Fant M (1996) Insulin-like growth factors (IGFs) and IGF binding proteins-1, -2, and -3 in newborn serum: relationships to fetoplacental growth at term. Early Hum Dev 46:15–26

    CAS  PubMed  Google Scholar 

  • Ostlund E, Tally M, Fried G (2002) Transforming growth ­factor-beta1 in fetal serum correlates with insulin-like growth factor-I and fetal growth. Obstet Gynecol 100:567–573

    CAS  PubMed  Google Scholar 

  • Palmer JR, Hatch EE, Rosenberg CL, Hartge P, Kaufman RH, Titus-Ernstoff L, Noller KL, Herbst AL, Rao RS, Troisi R, Colton T, Hoover RN (2002) Risk of breast cancer in women exposed to diethylstilbestrol in utero: preliminary results (United States). Cancer Causes Control 13:753–758

    PubMed  Google Scholar 

  • Panagiotopoulou K, Katsouyanni K, Petridou E, Garas Y, Tzonou A, Trichopoulos D (1990) Maternal age, parity, and pregnancy estrogens. Cancer Causes Control 1:119–124

    CAS  PubMed  Google Scholar 

  • Papa V, Belfiore A (1996) Insulin receptors in breast cancer: ­biological and clinical role. J Endocrinol Invest 19:324–333

    CAS  PubMed  Google Scholar 

  • Papa V, Pezzino V, Costantino A, Belfiore A, Giuffrida D, Frittitta L, Vannelli GB, Brand R, Goldfin ID, Vigneri R (1990) Elevated insulin receptor content in human breast cancer. J Clin Invest 86:1503–1510

    CAS  PubMed  Google Scholar 

  • Park SK, Kang D, McGlynn KA, Garcia-Closas M, Kim Y, Yoo KY, Brinton LA (2008) Intrauterine environments and breast cancer risk: meta-analysis and systematic review. Breast Cancer Res 10:R8

    PubMed  Google Scholar 

  • Petridou E, Panagiotopoulou K, Katsouyanni K, Spanos E, Trichopoulos D (1990) Tobacco smoking, pregnancy estrogens, and birth weight. Epidemiology 1:247–250

    CAS  PubMed  Google Scholar 

  • Pike MC, Spicer DV, Dahmoush L, Press MF (1993) Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol Rev 15:17–35

    CAS  PubMed  Google Scholar 

  • Platet N, Cathiard AM, Gleizes M, Garcia M (2004) Estrogens and their receptors in breast cancer progression: a dual role in cancer proliferation and invasion. Crit Rev Oncol Hematol 51:55–67

    PubMed  Google Scholar 

  • Pollak M (2000) Insulin-like growth factor physiology and cancer risk. Eur J Cancer 36:1224–1228

    CAS  PubMed  Google Scholar 

  • Reece EA, Wiznitzer A, Le E, Homko CJ, Behrman H, Spencer EM (1994) The relation between human fetal growth and fetal blood levels of insulin-like growth factors I and II, their binding proteins and receptors. Obstet Gynecol 84:88–95

    CAS  PubMed  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    CAS  PubMed  Google Scholar 

  • Robine N, Relier JP, Le Bars S (1988) Urocytogram, an index of maturity in premature infants. Biol Neonate 54:93–99

    CAS  PubMed  Google Scholar 

  • Rosen PR, Groshen S, Saigo PE, Kinne DW, Hellman S (1989) A long-term follow-up study of survival in stage I (T1N0M0) and stage II (T1N1M0) breast carcinoma. J Clin Oncol 7:355–366

    CAS  PubMed  Google Scholar 

  • Rudland PS (1993) Epithelial stem cells and their possible role in the development of the normal and diseased human breast. Histol Histopathol 8:385–404

    CAS  PubMed  Google Scholar 

  • Rudland PS, Barraclough R (1988) Stem cells in mammary gland differentiation and cancer. J Cell Sci Suppl 10:95–114

    CAS  PubMed  Google Scholar 

  • Rudland PS, Barraclough R, Fernig DG, Smith JA (1996) Growth and differentiation of the normal mammary gland and its tumors. Biochem Soc Symp 63:1–20

    Google Scholar 

  • Russo J, Russo IH (1987) Development of the human mammary gland. In: Neville MC, Daniel CW (eds) The mammary gland. Plenum, New York, pp 67–93

    Google Scholar 

  • Russo IH, Russo J (1996) Mammary gland neoplasia in long-term rodent studies. Environ Health Perspect 104:938–967

    CAS  PubMed  Google Scholar 

  • Russo J, Russo IH (2004) Development of the human breast. Maturitas 49:2–15

    CAS  PubMed  Google Scholar 

  • Sachdev D, Yee D (2001) The IGF system and breast cancer. Endocr Relat Cancer 8:197–209

    CAS  PubMed  Google Scholar 

  • Sanderson M, Williams MA, Daling JR, Holt VL, Malone KE, Self SG, Moore DE (1998) Maternal factors and breast cancer risk among young women. Paediatr Perinat Epidemiol 12:397–407

    CAS  PubMed  Google Scholar 

  • Schernhammer ES, Holly JM, Pollak MN, Hankinson SE (2005) Circulating levels of insulin-like growth factors, their binding proteins, and breast cancer risk. Cancer Epidemiol Biomarkers Prev 14:699–704

    CAS  PubMed  Google Scholar 

  • Schernhammer ES, Holly JM, Hunter DJ, Pollak MN, Hankinson SE (2006) Insulin-like growth factor-I, its binding proteins (IGFBP-1 and IGFBP-3), and growth hormone and breast cancer risk in The Nurses Health Study II. Endocr Relat Cancer 13:583–592

    CAS  PubMed  Google Scholar 

  • Sell S (2004) Stem cell origin of cancer and differentiation ­therapy. Crit Rev Oncol Hematol 51:1–28

    PubMed  Google Scholar 

  • Service RE (1998) New role for estrogen in cancer? Science 279:1631–1633

    CAS  PubMed  Google Scholar 

  • Shipley PW, Wray JA, Hechter HH, Arellano MG, Borhant NO (1967) Frequency of twinning in California. Its relationship to maternal age, parity and race. Am J Epidemiol 85:147–156

    CAS  PubMed  Google Scholar 

  • Siiteri PK, MacDonald PC (1966) Placental estrogen biosynthesis during human pregnancy. J Clin Endocrinol Metab 26:751–761

    CAS  PubMed  Google Scholar 

  • Spencer JA, Chang TC, Jones J, Robson SC, Preece MA (1995) Third trimester fetal growth and umbilical venous blood concentrations of IGF-1, IGFBP-1, and growth hormone at term. Arch Dis Child Fetal Neonatal Ed 73:F87–F90

    CAS  PubMed  Google Scholar 

  • Swerdlow AJ, De Stavola B, MacOnochie N, Siskind V (1996) A population-based study of cancer risk in twins: relationships to birth order and sexes of the twin pair. Int J Cancer 67:472–478

    CAS  PubMed  Google Scholar 

  • Swerdlow AJ, De Stavola BL, Swanwick MA, MacOnochie NE (1997) Risks of breast and testicular cancers in young adult twins in England and Wales: evidence on prenatal and genetic aetiology. Lancet 350:1723–1728

    CAS  PubMed  Google Scholar 

  • TambyRaja RL, Ratnam SS (1981) Plasma steroid changes in twin pregnancies. Prog Clin Biol Res 69A:189–195

    CAS  PubMed  Google Scholar 

  • Tapanainen J, Koivisto M, Vihko R, Huhtaniemi I (1981) Enhanced activity of the pituitary–gonadal axis in premature human infants. J Clin Endocrinol Metab 52:235–238

    CAS  PubMed  Google Scholar 

  • Thiery M, Dhont M, Vandekerckhove D (1977) Serum HCG and HPL in twin pregnancies. Acta Obstet Gynecol Scand 56:495–497

    CAS  PubMed  Google Scholar 

  • Tomatis L (1979) Prenatal exposure to chemical carcinogens and its effect on subsequent generations. Natl Cancer Inst Monogr 51:159–184

    PubMed  Google Scholar 

  • Tot T (2005) DCIS, cytokeratins and the theory of the sick lobe. Virchows Arch 447:1–8

    PubMed  Google Scholar 

  • Tot T (2007) The theory of the sick lobe and the possible consequences. Int J Surg Pathol 15:369–375

    PubMed  Google Scholar 

  • Tot T, Tabár L, Dean PB (2002) Practical breast pathology. Thieme, Stuttgart, pp 116–123

    Google Scholar 

  • Trichopoulos D (1990a) Hypothesis: does breast cancer originate in utero? Lancet 335:939–940

    CAS  PubMed  Google Scholar 

  • Trichopoulos D (1990b) Is breast cancer initiated in utero? Epidemiology 1:95–96

    CAS  PubMed  Google Scholar 

  • Trichopoulos D, Lagiou P, Adami HO (2005) Towards an integrated model for breast cancer etiology: the crucial role of the number of mammary tissue-specific stem cells. Breast Cancer Res 7:13–17

    PubMed  Google Scholar 

  • Troisi R, Potischman N, Roberts J, Siiteri P, Daftary A, Sims C, Hoover RN (2003a) Associations of maternal and umbilical cord hormone concentrations with maternal, gestational and neonatal factors (United States). Cancer Causes Control 14:347–355

    PubMed  Google Scholar 

  • Troisi R, Potischman N, Roberts JM, Harger G, Markovic N, Cole B, Lykins D, Siiteri P, Hoover RN (2003b) Correlation of serum hormone concentrations in maternal and umbilical cord samples. Cancer Epidemiol Biomarkers Prev 12:452–456

    CAS  PubMed  Google Scholar 

  • Troisi R, Hatch EE, Titus-Ernstoff L, Hyer M, Palmer JR, Robboy SJ, Strohsnitter WC, Kaufman R, Herbst AL, Hoover RN (2007) Cancer risk in women prenatally exposed to diethylstilbestrol. Int J Cancer 121:356–360

    CAS  PubMed  Google Scholar 

  • Tulchinsky D, Hobel CJ, Korenman SG (1971) A radioligand assay for plasma unconjugated estriol in normal and abnormal pregnancies. Am J Obstet Gynecol 111:311–318

    CAS  PubMed  Google Scholar 

  • Vatten LJ, Nilsen TI, Tretli S, Trichopoulos D, Romundstad PR (2005) Size at birth and risk of breast cancer: prospective population-based study. Int J Cancer 114:461–464

    CAS  PubMed  Google Scholar 

  • Vogel PM, Georgiade NG, Fetter BF, Vogel FS, McCarty KS Jr (1981) The correlation of histologic changes in the human breast with the menstrual cycle. Am J Pathol 104:23–34

    CAS  PubMed  Google Scholar 

  • Wei Q, Matanoski GM, Farmer ER, Hedayati MA, Grossman L (1993) DNA repair and aging in basal cell carcinoma: a molecular epidemiology study. Proc Natl Acad Sci USA 90:1614–1618

    CAS  PubMed  Google Scholar 

  • Weiss HA, Potischman NA, Brinton LA, Brogan D, Coates RJ, Gammon MD, Malone KE, Schoenberg JB (1997) Prenatal and perinatal risk factors for breast cancer in young women. Epidemiology 8:181–187

    CAS  PubMed  Google Scholar 

  • Weiss-Salz I, Harlap S, Friedlander Y, Kaduri L, Levy-Lahad E, Yanetz R, Deutsch L, Hochner H, Paltiel O (2007) Ethnic ancestry and increased paternal age are risk factors for breast cancer before the age of 40 years. Eur J Cancer Prev 16:549–554

    PubMed  Google Scholar 

  • Wellings SR, Jensen HM, Marcum RG (1975) An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J Natl Cancer Inst 55:231–273

    CAS  PubMed  Google Scholar 

  • White E, Lee CY, Kristal AR (1990) Evaluation of the increase in breast cancer incidence in relation to mammography use. J Natl Cancer Inst 82:1546–1552

    CAS  PubMed  Google Scholar 

  • Xu X, Dailey AB, Peoples-Sheps M, Talbott EO, Li N, Roth J (2009) Birth weight as a risk factor for breast cancer: a meta-analysis of 18 epidemiological studies. J Womens Health (Larchmt) 18:1169–1178

    Google Scholar 

  • Xue F, Michels KB (2007a) Intrauterine factors and risk of breast cancer: a systematic review and meta-analysis of current evidence. Lancet Oncol 8:1088–1100

    PubMed  Google Scholar 

  • Xue F, Michels KB (2007b) Diabetes, metabolic syndrome, and breast cancer: a review of the current evidence. Am J Clin Nutr 86:s823–s835

    PubMed  Google Scholar 

  • Xue F, Colditz GA, Willett WC, Rosner BA, Michels KB (2006) Parental age at delivery and incidence of breast cancer: a prospective cohort study. Breast Cancer Res Treat 104:331–340

    PubMed  Google Scholar 

  • Yu H, Jin F, Shu XO, Li BD, Dai Q, Cheng JR, Berkel HJ, Zheng W (2002) Insulin-like growth factors and breast cancer risk in Chinese women. Cancer Epidemiol Biomarkers Prev 11:705–712

    CAS  PubMed  Google Scholar 

  • Zapf J, Schmid C, Froesch E (1984) Biological and immunological properties of insulin-like growth factors (IGF) I and II. Clin Endocrinol Metab 13:7–12

    Google Scholar 

  • Zeisler H, Jirecek S, Hohlagschwandtner M, Knofler M, Tempfer C, Livingston JC (2002) Concentrations of estrogens in patients with preeclampsia. Wien Klin Wochenschr 114:458–461

    CAS  PubMed  Google Scholar 

  • Zhang Y, Cupples LA, Rosenberg L, Colton T, Kreger BE (1995) Parental ages at birth in relation to a daughter’s risk of breast cancer among female participants in the Framingham Study (United States). Cancer Causes Control 6:23–29

    CAS  PubMed  Google Scholar 

  • Zhu BT, Conney AH (1998) Functional role of estrogen metabolism in target cells: review and perspectives. Carcinogenesis 19:1–27

    PubMed  Google Scholar 

  • Yee D, Lee AV (2000) Crosstalk between the insulin-like growth factors and estrogens in breast cancer. J Mammary Gland Biol Neoplasia 5:107–115

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Xue, F., Michels, K.B. (2010). Breast Cancer May Originate In Utero: The Importance of the Intrauterine Environment for Breast Cancer Development. In: Tot, T. (eds) Breast Cancer. Springer, London. https://doi.org/10.1007/978-1-84996-314-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-314-5_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-313-8

  • Online ISBN: 978-1-84996-314-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics