Skip to main content

Endothelial Protection During Heart Surgery and Lung Transplantation

  • Chapter
  • First Online:
Principles of Pulmonary Protection in Heart Surgery
  • 1054 Accesses

Abstract

The edndothelium in the cardiovascular system is crucial in the regulation of systemic and pulmonary blood circulation. During heart and lung surgery, endothelial dysfunction occurs due to multiple factors, including ischemia-reperfusion injury and direct action of the cardioplegic and organ preservation solutions, as well as adjuncts to cardioplegic procedure. Maximally limiting ischemia-reperfusion injury and optimizing the formula of cardioplegic and preservation solutions are the future directions in surgery-related coronary and pulmonary endothelial protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cooper WA, Duarte IG, Thourani VH, Nakamura M, Wang NP, Brown WM III, Gott JP, Vinten-Johansen J, Guyton RA. Hypothermic circulatory arrest causes multisystem vascular endothelial dysfunction and apoptosis. Ann Thorac Surg. 2000;69:696-702; discussion 703.

    Google Scholar 

  2. Skaryak LA, Lodge AJ, Kirshbom PM, et al. Low-flow cardiopulmonary bypass produces greater pulmonary dysfunction than circulatory arrest. Ann Thorac Surg. 1996;62:1284-1288.

    Article  PubMed  CAS  Google Scholar 

  3. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987;84:9265-9269.

    Article  PubMed  CAS  Google Scholar 

  4. Moncada S, Gryglewski R, Bunting S, Vane JR. An enzyme isolated from arteries transforms prostagland in endoperoxides to an unstable substance that inhibits platelet aggregation. Nature. 1976;263:663-665.

    Article  PubMed  CAS  Google Scholar 

  5. Feletou M, Vanhoutte PM. Endothelium-dependent hyperpolarization of canine coronary smooth muscle. Br J Pharmacol. 1988;93:515-524.

    Article  PubMed  CAS  Google Scholar 

  6. Follet DM, Buckberg GD, Mulder DG, Fonkalsrud EW. Deleterious effects of crystalloid hyperkalemic cardioplegic solutions on arterial endothelial cells. Surg Forum. 1980;31:253.

    Google Scholar 

  7. Nilsson FN, Miller VM, Johnson CM, Tazelaar H, McGregor CG. Cardioplegia alters porcine coronary endothelial cell growth and responses to aggregating platelets. J Vasc Res. 1993;30:43-52.

    PubMed  CAS  Google Scholar 

  8. Strüber M, Ehlers KA, Nilsson FN, Miller VM, McGregor CG, Haverich A. Effects of lung preservation with Euro-Collins and University of Wisconsin solutions on endothelium-dependent relaxations. Ann Thorac Surg. 1997;63:1428-1435.

    Article  PubMed  Google Scholar 

  9. He GW. Hyperkalemia exposure impairs EDHF-mediated endothelial function in the human coronary artery. Ann Thorac Surg. 1997;63:84-87.

    Article  PubMed  CAS  Google Scholar 

  10. He GW, Yang CQ, Yang JA. Depolarizing cardiac arrest and endothelium-derived hyperpolarizing factor-mediated hyperpolarization and relaxation in coronary arteries: the effect and mechanism. J Thorac Cardiovasc Surg. 1997;113:932-941.

    Article  PubMed  CAS  Google Scholar 

  11. Yang Q, Liu YC, Zou W, Yim AP, He GW. Protective effect of magnesium on the endothelial function mediated by endothelium-derived hyperpolarizing factor in coronary arteries during cardioplegic arrest in a porcine model. J Thorac Cardiovasc Surg. 2002;124:361-370.

    Article  PubMed  CAS  Google Scholar 

  12. Yang Q, He GW. Effect of cardioplegic and organ preservation solutions and their components on coronary endothelium-derived relaxing factors. Ann Thorac Surg. 2005;80:757; El–E13.

    Google Scholar 

  13. Parolari A, Rubini P, Cannata A, et al. Endothelial damage during myocardial preservation and storage. Ann Thorac Surg. 2002;73:682-690.

    Article  PubMed  Google Scholar 

  14. Hashimoto K, Pearson PJ, Schaff HV, Cartier R. Endothelial cell dysfunction after ischemic arrest and reperfusion: a possible mechanism of myocardial injury during reflow. J Thorac Cardiovasc Surg. 1991;102:688-694.

    PubMed  CAS  Google Scholar 

  15. Qi XL, Nguyen TL, Andries L, Sys SU, Rouleau JL. Vascular endothelial dysfunction contributes to myocardial depression in ischemia-reperfusion in the rat. Can J Physiol Pharmacol. 1998;76:35-45.

    Article  PubMed  CAS  Google Scholar 

  16. Jorge PA, Osaki MR, de Almeida E, Dalva M, Credidio Neto L. Endothelium-dependent coronary flow in ischemia reperfusion. Exp Toxicol Pathol. 1997;49:147-151.

    Article  PubMed  CAS  Google Scholar 

  17. Seccombe JF, Schaff HV. Coronary artery endothelial function after myocardial ischemia and reperfusion. Ann Thorac Surg. 1995;60:778-788.

    Article  PubMed  CAS  Google Scholar 

  18. Engelman DT, Watanabe M, Engelman RM, et al. Constitutive nitric oxide release is impaired after ischemia and reperfusion. J Thorac Cardiovasc Surg. 1995;110:1047-1053.

    Article  PubMed  CAS  Google Scholar 

  19. Tiefenbacher CP, Chilian WM, Mitchell M, DeFily DV. Restoration of endothelium-dependent vasodilation after reperfusion injury by tetrahydrobiopterin. Circulation. 1996;94:1423-1429.

    Article  PubMed  CAS  Google Scholar 

  20. Vinten-Johansen J, Sato H, Zhao ZQ. The role of nitric oxide and NO-donor agents in myocardial protection from surgical ischemic-reperfusion injury. Int J Cardiol. 1995;50:273-281.

    Article  PubMed  CAS  Google Scholar 

  21. Gourine AV, Bulhak AA, Gonon AT, Pernow J, Sjöquist PO. Cardioprotective effect induced by brief exposure to nitric oxide before myocardial ischemia-reperfusion in vivo. Nitric Oxide. 2002;7:210-216.

    Article  PubMed  CAS  Google Scholar 

  22. Dong YY, Wu M, Yim AP, He GW. Hypoxia-reoxygenation, St. Thomas cardioplegic solution, and nicorandil on endothelium-derived hyperpolarizing factor in coronary microarteries. Ann Thorac Surg. 2005;80:1803-1811.

    Article  PubMed  Google Scholar 

  23. Dong YY, Wu M, Yim AP, He GW. Effect of hypoxia-reoxygenation on endothelial function in porcine cardiac microveins. Ann Thorac Surg. 2006;81:1708-1714.

    Article  PubMed  Google Scholar 

  24. Ren Z, Yang Q, Floten HS, Furnary AP, Yim AP, He GW. ATP-sensitive potassium channel openers may mimic the effects of hypoxic preconditioning on the coronary artery. Ann Thorac Surg. 2001;71:642-647.

    Article  PubMed  CAS  Google Scholar 

  25. Chan EC, Woodman OL. Enhanced role for the opening of potassium channels in relaxant responses to acetylcholine after myocardial ischaemia and reperfusion in dog coronary arteries. Br J Pharmacol. 1999;126:925-932.

    Article  PubMed  CAS  Google Scholar 

  26. Winn RK, Ramamoorthy C, Vedder NB, Sharar SR, Harlan JM. Leukocyte-endothelial cell interactions in ische-mia-reperfusion injury. Ann N Y Acad Sci. 1997;832:311-321.

    Article  PubMed  CAS  Google Scholar 

  27. Sellke FW, Friedman M, Dai HB, et al. Mechanisms causing coronary microvascular dysfunction following crystalloid cardioplegia and reperfusion. Cardiovasc Res. 1993;27:1925-1932.

    Article  PubMed  CAS  Google Scholar 

  28. Boyle EM Jr, Canty TG Jr, Morgan EN, Yun W, Pohlman TH, Verrier ED. Treating myocardial ischemia-re-perfusion injury by targeting endothelial cell transcription. Ann Thorac Surg. 1999;68:1949-1953.

    Article  PubMed  Google Scholar 

  29. Valen G, Paulsson G, Vaage J. Induction of inflammatory mediators during reperfusion of the human heart. Ann Thorac Surg. 2001;71:226-232.

    Article  PubMed  CAS  Google Scholar 

  30. Sellke FW, Shafique T, Ely DL, Weintraub RM. Coronary endothelial injury after cardiopulmonary bypass and ischemic cardioplegia is mediated by oxygen-derived free radicals. Circulation. 1993;88:II395-II400.

    PubMed  CAS  Google Scholar 

  31. Kawata H, Aoki M, Hickey PR, Mayer JE Jr. Effect of antibody to leukocyte adhesion molecule CD18 on recovery of neonatal lamb hearts after 2 hours of cold ischemia. Circulation. 1992;86:II364-II370.

    PubMed  CAS  Google Scholar 

  32. Kupatt C, Habazettl H, Goedecke A, et al. Tumor necrosis factor-alpha contributes to ischemiaand reperfusion-induced endothelial activation in isolated hearts. Circ Res. 1999;84:392-400.

    Article  PubMed  CAS  Google Scholar 

  33. Liu Y, Terata K, Chai Q, Li H, Kleinman LH, Gutterman DD. Peroxynitrite Inhibits Ca2+-activated K+ channel activity in smooth muscle of human coronary arterioles. Circ Res. 2002;91:1070-1076.

    Article  PubMed  CAS  Google Scholar 

  34. Wennmalm A, Pham-Huu-Chanh, Junstad S. Hypoxia causes prostaglandin release from perfused rabbit hearts. Acta Physiol Scand. 1974;91:133-135.

    Google Scholar 

  35. Nomura F, Matsuda H, Hirose H, et al. Assessment of prostacyclin and thromboxane A2 release during reperfusion after global ischemia induced by crystalloid cardioplegia – comparison between warm and cold ischemia. Eur Surg Res. 1988;20:110-119.

    Article  PubMed  CAS  Google Scholar 

  36. Metais C, Li J, Simons M, Sellke FW. Serotonin-in-duced coronary contraction increases after blood cardioplegia-reperfusion: role of COX-2 expression. Circulation. 1999;100(Suppl):II328-II334.

    Article  PubMed  CAS  Google Scholar 

  37. Gohra H, Fujimura Y, Hamano K, et al. Nitric oxide release from coronary vasculature before, during, and following cardioplegic arrest. World J Surg. 1999;23:1249-1253.

    Article  PubMed  CAS  Google Scholar 

  38. Pearl JM, Laks H, Drinkwater DC, et al. Loss of endothelium-dependent vasodilatation and nitric oxide release after myocardial protection with University of Wisconsin solution. J Thorac Cardiovasc Surg. 1994;107:257-264.

    PubMed  CAS  Google Scholar 

  39. Nakamura K, Schmidt I, Gray CC, et al. The effect of chronic L-arginine administration on vascular recovery following cold cardioplegic arrest in rats. Eur J Cardiothorac Surg. 2002;21:753-759.

    Article  PubMed  Google Scholar 

  40. Pinsky DJ, Naka Y, Chowdhury NC, et al. The nitric oxide/cyclic GMP pathway in organ transplantation: critical role in successful lung preservation. Proc Natl Acad Sci U S A. 1994;91:12086-12090.

    Article  PubMed  CAS  Google Scholar 

  41. Naka Y, Roy DK, Smerling AJ, Michler RE, Smith CR, Stern DM, Oz MC, Pinsky DJ. Inhaled nitric oxide fails to confer the pulmonary protection provided by distal stimulation of the nitric oxide pathway at the level of cyclic guanosine monophosphate. J Thorac Cardiovasc Surg. 1995;110:1434-1440; discussion 1440-1441.

    Google Scholar 

  42. Dignan RJ, Dyke CM, Abd-Elfattah AS, et al. Coronary artery endothelial cell and smooth muscle dysfunction after global myocardial ischemia. Ann Thorac Surg. 1992;53:311-317.

    Article  PubMed  CAS  Google Scholar 

  43. He GW, Yang CQ, Wilson GJ, Rebeyka IM. Tolerance of epicardial coronary endothelium and smooth muscle to hyperkalemia. Ann Thorac Surg. 1994;57:682-688.

    Article  PubMed  CAS  Google Scholar 

  44. He GW, Yang CQ, Rebeyka IM, Wilson GJ. Effects of hyperkalemia on neonatal endothelium and smooth muscle. J Heart Lung Transplant. 1995;14:92-101.

    PubMed  CAS  Google Scholar 

  45. Ge ZD, He GW. Altered endothelium-derived hyperpolarizing factor-mediated endothelial function in coronary microarteries by St Thomas’ Hospital solution. J Thorac Cardiovasc Surg. 1999;118:173-180.

    Article  PubMed  CAS  Google Scholar 

  46. Ge ZD, He GW. Comparison of University of Wisconsin and St Thomas’ Hospital solutions on endotheli-um-derived hyperpolarizing factor-mediated function in coronary micro-arteries. Transplantation. 2000;70:22-31.

    PubMed  CAS  Google Scholar 

  47. Zou W, Yang Q, Yim AP, He GW. Impaired endothelium-derived hyperpolarizing factor-mediated relaxation in porcine pulmonary microarteries after cold storage with Euro-Collins and University of Wisconsin solutions. J Thorac Cardiovasc Surg. 2003;126:208-215.

    Article  PubMed  CAS  Google Scholar 

  48. Zhang RZ, Yang Q, Yim AP, He GW. Alteration of cellular electrophysiologic properties in porcine pulmonary microcirculation after preservation with University of Wisconsin and Euro-Collins solutions. Ann Thorac Surg. 2004;77:1944-1950.

    Article  PubMed  Google Scholar 

  49. He GW, Yang CQ, Graier WF, Yang JA. Hyperkalemia alters EDHF-mediated hyperpolarization and relaxation in coronary arteries. Am J Physiol. 1996;271:H760-H767.

    PubMed  CAS  Google Scholar 

  50. He GW, Yang CQ. Superiority of hyperpolarizing to depolarizing cardioplegia in protection of coronary endothelial function. J Thorac Cardiovasc Surg. 1997;114:643-650.

    Article  PubMed  CAS  Google Scholar 

  51. Mankad PS, Chester AH, Yacoub MH. Role of potassium concentration in cardioplegic solutions in mediating endothelial damage. Ann Thorac Surg. 1991;51:89-93.

    Article  PubMed  CAS  Google Scholar 

  52. Evora PR, Pearson PJ, Schaff HV. Crystalloid cardioplegia and hypothermia do not impair endothelium-dependent relaxation or damage vascular smooth muscle of epicardial coronary arteries. J Thorac Cardiovasc Surg. 1992;104:365-1374.

    PubMed  CAS  Google Scholar 

  53. Yang Q, Zhang RZ, Yim AP, He GW. Release of nitric oxide and endothelium-derived hyperpolarizing factor (EDHF) in porcine coronary arteries exposed to hyperkalemia: effect of nicorandil. Ann Thorac Surg. 2005;79:2065-2071.

    Article  PubMed  Google Scholar 

  54. Vinten-Johansen J, Hammon JW. Myocardial protection during cardiac surgery. In: Gravlee GP et al., eds. Cardiopulmonary Bypass: Principles and Practice. Baltimore: Williams & Wilkins; 1993:155-206.

    Google Scholar 

  55. Hearse DJ, Stewart DA, Braimbridge MV. Myocardial protection during ischemia cardiac arrest: the importance of magnesium in cardioplegic infusates. J Thorac Cardiovasc Surg. 1978;75:877-885.

    PubMed  CAS  Google Scholar 

  56. Shakerinia T, Ali IM, Sullivan JA. Magnesium in cardioplegia: is it necessary? Can J Surg. 1996;39:397-400.

    PubMed  CAS  Google Scholar 

  57. Yang ZW, Gebrewold A, Nowakowski M, Altura BT, Altura BM. Mg(2+)-induced endothelium-dependent relaxation of blood vessels and blood pressure lowering: role of NO. Am J Physiol. 2000;278:R628-R639.

    CAS  Google Scholar 

  58. Longo M, Jain V, Vedernikov YP, Facchinetti F, Saade GR, Garfield RE. Endothelium dependence and gestational regulation of inhibition of vascular tone by magnesium sulfate in rat aorta. Am J Obstet Gynecol. 2001;184:971-978.

    Article  PubMed  CAS  Google Scholar 

  59. Haenni A, Johansson K, Lind L, Lithell H. Magnesium infusion improves endothelium-dependent vasodilation in the human forearm. Am J Hypertens. 2002;15:5-10.

    Google Scholar 

  60. Laurant P, Berthelot A. Influence of endothelium in the vitro vasorelaxant effect of magnesium on aortic basal tension in DOCA-salt hypertensive rat. Magnes Res. 1992;5:255-260.

    PubMed  CAS  Google Scholar 

  61. Tofukuji M, Stamler A, Li J, et al. Effects of magnesium cardioplegia on regulation of the porcine coronary circulation. J Surg Res. 1997;69:233-239.

    Article  PubMed  CAS  Google Scholar 

  62. Pearson PJ, Evora PR, Seccombe JF, Schaff HV. Hypomagnesemia inhibits nitric oxide release from coronary endothelium: protective role of magnesium infusion after cardiac operations. Ann Thorac Surg. 1998;65:967-972.

    Article  PubMed  CAS  Google Scholar 

  63. Ahn HY, Karaki H. Inhibitory effects of procaine on contraction and movement in vascular and intestinal smooth muscles. Br J Pharmacol. 1988;94:789-796.

    Article  PubMed  CAS  Google Scholar 

  64. Huang Y, Lau CW, Chan FL, Yao XQ. Contribution of nitric oxide and K+channel activation to vasorelaxation of isolated rat aorta induced by procaine. Eur J Pharmacol. 1999;367:231-237.

    Article  PubMed  CAS  Google Scholar 

  65. Yang Q, Liu YC, Zou W, Yim AP, He GW. Procaine in cardioplegia: the effect on EDHF-mediated function in porcine coronary arteries. J Card Surg. 2002;17:470-475.

    Article  PubMed  Google Scholar 

  66. Itoh T, Kuriyama H, Suzuki H. Excitation-contraction coupling in smooth muscle cells of the guinea pig mesenteric artery. J Physiol. 1981;321:513-535.

    PubMed  CAS  Google Scholar 

  67. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124-1136.

    Article  PubMed  CAS  Google Scholar 

  68. Rubino A, Yellon DM. Ischaemic preconditioning of the vasculature: an overlooked phenomenon for protecting the heart? Trends Pharmacol Sci. 2000;21:225-230.

    Article  PubMed  CAS  Google Scholar 

  69. Ren Z, Yang Q, Floten HS, He GW. Hypoxic preconditioning in coronary microarteries: role of EDHF and K+ channel openers. Ann Thorac Surg. 2002;74:143-148.

    Article  PubMed  Google Scholar 

  70. Gasparri RI, Jannis NC, Flameng WJ, Lerut TE, Van Raemdonck DE. Ischemic preconditioning enhances donor lung preservation in the rabbit. Eur J Cardiothorac Surg. 1999;16:639-646.

    Article  PubMed  CAS  Google Scholar 

  71. Li G, Chen S, Lou W, Lu E. Protective effects of ischemic preconditioning on donor lung in canine lung transplantation. Chest. 1998;113:1356-1359.

    Article  PubMed  CAS  Google Scholar 

  72. Kandilci HB, Gumusel B, Topaloglu E, et al. Effects of ischemic preconditioning on rat lung: role of nitric oxide. Exp Lung Res. 2006;32:287-303.

    Article  PubMed  CAS  Google Scholar 

  73. Kandilci HB, Gümüşel B, Demiryürek AT, Lippton H. Preconditioning modulates pulmonary endothelial dysfunction following ischemia-reperfusion injury in the rat lung: role of potassium channels. Life Sci. 2006;79:2172-2178.

    Article  PubMed  CAS  Google Scholar 

  74. Argaud L, Gateau-Roesch O, Raisky O, Loufouat J, Robert D, Ovize M. Postconditioning inhibits mitochondrial permeability transition. Circulation. 2005;111:194-197.

    Article  PubMed  CAS  Google Scholar 

  75. Crisostomo PR, Wairiuko GM, Wang M, Tsai BM, Morrell ED, Meldrum DR. Preconditioning versus postconditioning: mechanisms and therapeutic potentials. J Am Coll Surg. 2006;202:797-812.

    Article  PubMed  Google Scholar 

  76. Staat P, Rioufol G, Piot C, et al. Postconditioning the human heart. Circulation. 2005;112:2143-2148.

    Article  PubMed  Google Scholar 

  77. Vinten-Johansen J, Zhao ZQ, Zatta AJ, Kin H, Halkos ME, Kerendi F. Postconditioning–a new link in nature’s armor against myocardial ischemia-reperfusion injury. Basic Res Cardiol. 2005;100:295-310.

    Article  PubMed  CAS  Google Scholar 

  78. Loukogeorgakis SP, Panagiotidou AT, Yellon DM, Deanfield JE, MacAllister RJ. Postconditioning protects against endothelial ischemia-reperfusion injury in the human forearm. Circulation. 2006;113:1015-1019.

    Article  PubMed  Google Scholar 

  79. Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol. 2003;285:H579-H588.

    CAS  Google Scholar 

  80. Ma X, Zhang X, Li C, Luo M. Effect of postconditioning on coronary blood flow velocity and endothelial function and LV recovery after myocardial infarction. J Interv Cardiol. 2006;19:367-375.

    Article  PubMed  Google Scholar 

  81. Sato H, Zhao ZQ, McGee DS, Williams MW, Hammon JW Jr, Vinten-Johansen J. Supplemental L-arginine during cardioplegic arrest and reperfusion avoids regional postischemic injury. J Thorac Cardiovasc Surg. 1995;110:302-314.

    Article  PubMed  CAS  Google Scholar 

  82. Lefer AM. Attenuation of myocardial ischemia-re-perfusion injury with nitric oxide replacement therapy. Ann Thorac Surg. 1995;60:847-851.

    Article  PubMed  CAS  Google Scholar 

  83. McKeown PP, McClelland JS, Bone DK, et al. Nitroglycerin as an adjunct to hypothermic hyperkalemic cardioplegia. Circulation. 1983;68:II107-II111.

    PubMed  CAS  Google Scholar 

  84. Chu Y, Wu YC, Chou YC, et al. Endothelium-dependent relaxation of canine pulmonary artery after prolonged lung graft preservation in University of Wisconsin solution: role of L-arginine supplementation. J Heart Lung Transplant. 2004;23:592-598.

    Article  PubMed  Google Scholar 

  85. Wittwer T, Albes JM, Fehrenbach A, et al. Experimental lung preservation with Perfadex: effect of the NO-donor nitroglycerin on postischemic outcome. J Thorac Cardiovasc Surg. 2003;125:1208-1216.

    Article  PubMed  CAS  Google Scholar 

  86. Feng J, Wu G, Tang S, Chahine R, Lamontagne D. Beneficial effects of iloprost cardioplegia in ischemic arrest in isolated working rat heart. Prostaglandins Leukot Essent Fatty Acids. 1996;54:279-283.

    Article  PubMed  CAS  Google Scholar 

  87. Nomura F, Matsuda H, Shirakura R, et al. Experimental evaluation of myocardial protective effect of prostacyclin analog (OP41483) as an adjunct to cardioplegic solution. J Thorac Cardiovasc Surg. 1991;101:860-865.

    PubMed  CAS  Google Scholar 

  88. Gohrbandt B, Sommer SP, Fischer S, et al. Iloprost to improve surfactant function in porcine pulmonary grafts stored for twenty-four hours in low-potassium dextran solution. J Thorac Cardiovasc Surg. 2005;129:80-86.

    Article  PubMed  CAS  Google Scholar 

  89. Zou W, Yang Q, Yim AP, He GW. Epoxyeicosatrienoic acids (EET(11, 12)) may partially restore endothelium-derived hyperpolarizing factor-mediated function in coronary microarteries. Ann Thorac Surg. 2001;72:1970-1976.

    Article  PubMed  CAS  Google Scholar 

  90. Yang Q, Zhang RZ, Yim AP, He GW. Effect of 11, 12 epoxyeicosatrienoic acid (EET11, 12) as additive to St. Thomas’ cardioplegia or University of Wisconsin solution on endothelium-derived hyperpolarizing factor-mediated function in coronary microarteries: influence of temperature and time. Ann Thorac Surg. 2003;76:1623-1630.

    Article  PubMed  Google Scholar 

  91. Li HY, Wu S, He GW, Wong TM. Aprikalim reduces the Na+-Ca2+ exchange outward current enhanced by hyperkalemia in rat ventricular myocytes. Ann Thorac Surg. 2002;73:1253-1259; discussion 1259-1260.

    Google Scholar 

  92. He GW. Potassium channel opener in cardioplegia may restore coronary endothelial function. Ann Thorac Surg. 1998;66:1318-1322.

    Article  PubMed  CAS  Google Scholar 

  93. Yang Q, Huang JH, Dong YY, Underwood MJ, He GW. New strategy to protect coronary endothelium from ischemia-reperfusion injury by using Ca2+-activated K+ channel activators: functional and cellular electrophysiological studies (abstract). Circ J. 2009;73(Suppl I):397.

    Google Scholar 

  94. Chambers DJ, Astras G, Takahashi A, Manning AS, Braimbridge MV, Hearse DJ. Free radicals and cardioplegia: organic antioxidants as additives to the St Thomas’ Hospital cardioplegic solution. Cardiovasc Res. 1989;23:351-358.

    Article  PubMed  CAS  Google Scholar 

  95. Theroux P, Chaitman BR, Danchin N, et al. Inhibition of the sodium-hydrogen exchanger with cariporide to prevent myocardial infarction in high-risk ischemic situations. Main results of the GUARDIAN trial. Guard during ischemia against necrosis (GUARDIAN) Investigators. Circulation. 2000;102:3032-3038.

    Article  PubMed  CAS  Google Scholar 

  96. Muraki S, Morris CD, Budde JM, Zhao ZQ, Guyton RA, Vinten-Johansen J. Blood cardioplegia supplementation with the sodium-hydrogen ion exchange inhibitor cariporide to attenuate infarct size and coronary artery endothelial dysfunction after severe regional ischemia in a canine model. J Thorac Cardiovasc Surg. 2003;125:155-164.

    Article  PubMed  CAS  Google Scholar 

  97. Keller MW, Geddes L, Spotnitz W, Kaul S, Duling BR. Microcirculatory dysfunction following perfusion with hyperkalemic, hypothermic, cardioplegic solutions and blood reperfusion. Effects of adenosine. Circulation. 1991;84:2485-2494.

    Article  PubMed  CAS  Google Scholar 

  98. Sellke FW, Friedman M, Wang SY, Piana RN, Dai HB, Johnson RG. Adenosine and AICA-riboside fail to enhance microvascular endothelial preservation. Ann Thorac Surg. 1994;58:200-206.

    Article  PubMed  CAS  Google Scholar 

  99. Wang Y, Sunamori M, Suzuki A. Effect of phosphodiesterase III-inhibitor (E-1020) adjunct to Bretschnei-der’s HTK cardioplegic solution on myocardial preservation in rabbit heart. Thorac Cardiovasc Surg. 1996;44:167-172.

    Article  PubMed  CAS  Google Scholar 

  100. Jovanovic S, Jovanovic A, Shen WK, Terzic A. Protective action of 17beta-estradiol in cardiac cells: implications for hyperkalemic cardioplegia. Ann Thorac Surg. 1998;66:1658-1661.

    Article  PubMed  CAS  Google Scholar 

  101. Rubanyi GM, Johns A, Kauser K. Effect of estrogen on endothelial function and angiogenesis. Vascul Pharmacol. 2002;38:89-98.

    Article  PubMed  CAS  Google Scholar 

  102. Standeven JW, Jellinek M, Menz LJ, Kolata RJ, Barner HB. Cold blood potassium diltiazem cardioplegia. J Thorac Cardiovasc Surg. 1984;87:201-212.

    PubMed  CAS  Google Scholar 

  103. Trubel W, Zwoelfer W, Moritz A, Laczkovics A, Haider W. Cardioprotection by nifedipine cardioplegia during coronary artery surgery. Eur J Anaesthesiol. 1994;11:101-106.

    PubMed  CAS  Google Scholar 

  104. Rosenkranz ER. Substrate enhancement of cardioplegic solution: experimental studies and clinical evaluation. Ann Thorac Surg. 1995;60:797-800.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Hong Kong GRF grant (CUHK4651/07M and CUHK 4789/09M), CUHK direct grants 2041561 2041457 Providence St. Vincent Medical Foundation, Portland, Oregon, USA, and China National Ministry of Science and Technology Grands 2009 DFB 30560 and 2010 CB 529502 (973), Tianjin Municipal Science and Technology Commission great 09ZCZDSF04200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Yang, Q., He, GW. (2010). Endothelial Protection During Heart Surgery and Lung Transplantation. In: Gabriel, E., Salerno, T. (eds) Principles of Pulmonary Protection in Heart Surgery. Springer, London. https://doi.org/10.1007/978-1-84996-308-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-308-4_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-307-7

  • Online ISBN: 978-1-84996-308-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics