Skip to main content

Lung Perfusion and Coronary Artery Bypass Grafting

  • Chapter
  • First Online:
Principles of Pulmonary Protection in Heart Surgery
  • 1046 Accesses

Abstract

If there is no shunt defect, the total blood volume entering the right heart is thereafter ejected into the lungs. Apart from the blood entering the lungs over the right heart, the lungs are perfused via bronchial arteries that are branches of the descending aorta. The bronchial arteries primarily have nutritive function and are thought not to contribute to the oxygenation of the circulating blood. The contribution of bronchial arteries to the perfusion of the lungs may be as low as 1–3%.1,2 Bronchial venous blood is collected in the right and, mainly, left atrium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ng CSH, Wan S, Yim APC, Arifi AA. Pulmonary dysfunction after cardiac surgery. Chest. 2002;121:1269-1277.

    Article  PubMed  Google Scholar 

  2. Ungerleider RM. Lung ischemia during cardiopulmonary bypass. Letter to the editor. Reply. Ann Thorac Surg. 2000;70:337-338.

    Article  Google Scholar 

  3. Calvin SH, Wan S, Yim APC, Arifi AA. Pulmonary dysfunction after cardiac surgery. Chest. 2002;121:1269-1277.

    Article  Google Scholar 

  4. Schlensak C, Doenst T, Preußer S, Wunderlich M, Kleinschmidt M, Beyersdorf F. Cardiopulmonary bypass reduction of bronchial blood flow: a potential mechanism for lung injury in a neonatal pig model. J Thorac Cardiovasc Surg. 2002;123:1199-1205.

    Article  PubMed  Google Scholar 

  5. Shenkman Z, Shir Y, Weiss YG, Bleiberg B, Gross D. The effects of cardiac surgery on early and late pulmonary functions. Acta Anaesthesiol Scand. 1997;41:1193-1199.

    Article  PubMed  CAS  Google Scholar 

  6. Hill GE, Pohorecki R, Alonso A, Rennard SI, Robbins RA. Aprotinin reduces interleukin-8 production and lung neutrophil accumulation after cardiopulmonary bypass. Anesth Analg. 1996;83:696-700.

    PubMed  CAS  Google Scholar 

  7. Massoudy P, Zahler S, Becker BF, et al. Significant leukocyte and platelet retention during pulmonary passage after declamping of the aorta in CABG patients. Eur J Med Res. 1999;4:178-182.

    PubMed  CAS  Google Scholar 

  8. Massoudy P, Zahler S, Becker BF, Braun SL, Barankay A, Meisner H. Evidence for inflammatory responses during coronary artery bypass grafting with cardiopulmonary bypass. Chest. 2001;119:31-36.

    Article  PubMed  CAS  Google Scholar 

  9. Sekido N, Mukaida N, Harada A, Nakanishi I, Watanabe Y, Matsushima K. Prevention of lung reperfusion injury in rabbits by a monoclonal antibody against interleukin-8. Nature. 1993;365:654-657.

    Article  PubMed  CAS  Google Scholar 

  10. Dreyer WJ, Michael LH, Millman EE, Berens KL, Geske RS. Neutrophil sequestration and pulmonary dysfunction in a canine model of open heart surgery with cardiopulmonary bypass. Evidence for a CD-18 dependent mechanism. Circulation. 1995;92:2276-2283.

    Article  PubMed  CAS  Google Scholar 

  11. Kirshbom PM, Page SO, Jacobs MT, et al. Cardiopulmonary bypass and circulatory arrest increase endothelin-1 production and receptor expression in the lung. J Thorac Cardiovasc Surg. 1997;113:777-783.

    Article  PubMed  CAS  Google Scholar 

  12. Erez E, Erman A, Snir E, et al. Thromboxane production in human lung during cardiopulmonary bypass: beneficial effect of aspirin? Ann Thorac Surg. 1998;65:101-106.

    Article  PubMed  CAS  Google Scholar 

  13. Shafique T, Johnson RG, Dai HB, Weintraub RM, Seke FW. Altered pulmonary microvascular reactivity after total cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1993;106:479-486.

    PubMed  CAS  Google Scholar 

  14. Rehm M, Bruegger D, Christ F, et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation. 2007;116:1896-1906.

    Article  PubMed  CAS  Google Scholar 

  15. Massoudy P, Piotrowski JA, van de Wal HCJM, et al. Perfusing and ventilating the patient’s lungs during bypass ameliorates the increase in extravascular thermal volume after coronary bypass grafting. Ann Thorac Surg. 2003;76:516-522.

    Article  PubMed  Google Scholar 

  16. Massoudy P, Zahler S, Tassani P, et al. Reduction of pro-inflammatory cytokine levels and cellular adhesion in CABG procedures with separated pulmonary and systemic extracorporeal circulation without an oxygenator. Eur J Cardiothorac Surg. 2000;17:729-736.

    Article  PubMed  CAS  Google Scholar 

  17. Cardigan RA, Hamilton-Davies C, McDonals S, et al. Hemostatic changes in the pulmonary blood during cardiopulmonary bypass. Blood Coagul Fibrinolysis. 1996;7:567-577.

    Article  PubMed  CAS  Google Scholar 

  18. Cicala C, Cirino G. Linkage between inflammation and coagulation: an update on the molecular basis of the crosstalk. Life Sci. 1998;62:1817-1824.

    Article  PubMed  CAS  Google Scholar 

  19. Drew CE, Anderson IM. Profound hypothermia in cardiac surgery. Report of three cases. Lancet. 1959;1:748-750.

    Article  PubMed  CAS  Google Scholar 

  20. Dobell ARC, Bailey JS. Charles Drew and the origins of deep hypothermic circulatory arrest. Ann Thorac Surg. 1997;63:1193-1199.

    Article  PubMed  CAS  Google Scholar 

  21. Edmunds LH. Why cardiopulmonary bypass makes patients sick: strategies to control the blood synthetic surface interface. Adv Cardiac Surg. 1995;6:131-167.

    Google Scholar 

  22. Cameron D. Initiation of white cell activation during cardiopulmonary bypass: cytokines and receptors. J Cardiovasc Pharmacol. 1996;27(suppl 1):S1-S5.

    Article  PubMed  CAS  Google Scholar 

  23. Morse DS, Adams D, Magnani B. Platelet and neutrophil activation during cardiac surgical procedures: impact of cardiopulmonary bypass. Ann Thorac Surg. 1998;65:691-695.

    Article  PubMed  CAS  Google Scholar 

  24. Richter JA, Meisner H, Tassani P, Barankay A, Dietrich W, Braun SL. Drew-Anderson technique attenuates systemic inflammatory response syndrome and improves respiratory function after coronary artery bypass grafting. Ann Thorac Surg. 1999;69:77-83.

    Article  Google Scholar 

  25. Utgaard JO, Jahnsen FL, Bakka A, Brandtzaeg P, Haraldsen G. Rapid secretion of prestored interleukin 8 from Weibel palade bodies of microvascular endothelial cells. J Exp Med. 1998;188:1751-1756.

    Article  PubMed  CAS  Google Scholar 

  26. Suzuki T, Fukuda T, Ito T, Inoue Y, Cho Y, Kashima I. Continuous pulmonary perfusion during cardiopulmonary bypass prevents lung injury in infants. Ann Thorac Surg. 2000;69:602-606.

    Article  PubMed  CAS  Google Scholar 

  27. Goebel U, Siepe M, Mecklenburg A, et al. Reduced inflammatory response during cardiopulmonary bypass: effects of a combined pulmonary perfusion and carbon monoxide inhalation. Eur J Cardiothorac Surg. 2008;34:1165-1172.

    Article  PubMed  Google Scholar 

  28. Sievers H-H, Freund-Kaas C, Eleftheriadis S, et al. Lung protection during total cardiopulmonary bypass by isolated lung perfusion: preliminary results of a novel perfusion strategy. Ann Thorac Surg. 2002;74:1167-1172.

    Article  PubMed  Google Scholar 

  29. Liu Y, Wang Q, Zhu X, et al. Pulmonary artery perfusion with protective solution reduces lung injury after cardiopulmonary bypass. Ann Thorac Surg. 2000;69:1402-1407.

    Article  PubMed  CAS  Google Scholar 

  30. Gummert JF, Funkat A, Beckmann A, et al. Cardiac surgery in Germany during 2007: A report on behalf of the German Society for Thoracic and Cardiovascular Surgery. Thorac Cardiovasc Surg. 2008;56:328-336.

    Article  PubMed  CAS  Google Scholar 

  31. Puskas JD, Wiliams WH, Duke PG, et al. Off-pump coronary artery bypass grafting provides complete revascularisation with reduced myocardial injury, transfusion requirements, and length of stay: a prospective randomised comparison of two hundred unselected patients undergoing off-pump versus conventional coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2003;125:797-808.

    Article  PubMed  CAS  Google Scholar 

  32. Al-Ruzzeh S, Nakamura K, Athanasiou T, et al. Does off-pump coronary artery bypass (OPCAB) surgery improve the outcome in high-risk patients? A comparative study of 1398 high-risk patients. Eur J Cardiothorac Surg. 2003;23:50-55.

    Article  PubMed  Google Scholar 

  33. Samuel LE, Kaufmann MS, Morris RJ, Promisloff R, Brockmann SK. Coronary artery bypass grafting in patients with COPD. Chest. 1998;113:878-882.

    Article  Google Scholar 

  34. Tomic V, Russwurm S, Möller E, et al. Transcriptomic and proteomic patterns of systemic inflammation in on-pump and off-pump coronary artery bypass grafting. Circulation. 2005;112:2912-2920.

    PubMed  CAS  Google Scholar 

  35. Fabre O, Vincentelli A, Corseaux D, et al. Comparison of blood activation in the wound, active vent, and cardiopulmonary bypass circuit. Ann Thorac Surg. 2008;86:537-542.

    Article  PubMed  Google Scholar 

  36. Gulielmos V, Menschikowski M, Dill H-M, et al. Interleukin-1, interleukin-6 and myocardial enzyme response after coronary artery bypass grafting – a prospective randomised comparison of the conventional and three minimally invasive surgical techniques. Eur J Cardiothorac Surg. 2000;18:594-601.

    Article  PubMed  CAS  Google Scholar 

  37. Raja SG, Berg GA. Impact of off-pump coronary artery bypass surgery on systemic inflammation: current best available evidence. J Card Surg. 2007;22:445-455.

    Article  PubMed  Google Scholar 

  38. Wan S, Le Clerc JL, Vincent JL. Inflammatory response to cardiopulmonary bypass. Mechanisms involved and possible therapeutic strategies. Chest 1997;112:676–692

    Google Scholar 

  39. Vassilakopoulos T, Zakynthinos S. When mechanical ventilation mimics nature. Crit Care Med. 2008;36:818-827.

    Article  Google Scholar 

  40. Beiderlinden M, Eikermann M, Boes T, Breitfeld C, Peters J. Treatment of severe acute respiratory distress syndrome: role of extracorporeal gas exchange. Intensive Care Med. 2006;32:1627-1631.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parwis Massoudy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Massoudy, P., Jakob, H. (2010). Lung Perfusion and Coronary Artery Bypass Grafting. In: Gabriel, E., Salerno, T. (eds) Principles of Pulmonary Protection in Heart Surgery. Springer, London. https://doi.org/10.1007/978-1-84996-308-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-308-4_41

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-307-7

  • Online ISBN: 978-1-84996-308-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics