Skip to main content

L-Arginine and Ischemia-Reperfusion Injury

  • Chapter
  • First Online:
Principles of Pulmonary Protection in Heart Surgery
  • 1047 Accesses

Abstract

Despite continuous optimization of lung preservation strategies, the lung remains extremely vulnerable to ischemia-reperfusion (I/R) injury.1 It is generally known that I/R-induced lung injury is characterized by (1) increased microvascular permeability and edema, (2) dysfunction of the pulmonary endothelium, (3) aggregation of neutrophils and platelets, and (4) sometimes hemorrhage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carvalho EM, Gabriel EA, Salerno TA. Pulmonary protection during cardiac surgery: systematic literature review. Asian Cardiovasc Thorac Ann. 2008;16(6):503-507.

    PubMed  Google Scholar 

  2. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327(6122):524-526.

    Article  PubMed  CAS  Google Scholar 

  3. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001;357(pt 3):593-615.

    Article  PubMed  CAS  Google Scholar 

  4. Block ER, Herrera H, Couch M. Hypoxia inhibits L-arginine uptake by pulmonary artery endothelial cells. Am J Physiol. 1995;269(5 pt 1):L574-L580.

    PubMed  CAS  Google Scholar 

  5. Zheng XF, Kwan CY, Daniel EE. Role of intracellular Ca2+ in EDRF release in rat aorta. J Vasc Res. 1994;31(1):18-24.

    PubMed  CAS  Google Scholar 

  6. Feron O, Saldana F, Michel JB, Michel T. The endothelial nitric-oxide synthase-caveolin regulatory cycle. J Biol Chem. 1998;273(6):3125-3128.

    Article  PubMed  CAS  Google Scholar 

  7. McDonald KK, Zharikov S, Block ER, Kilberg MS. A caveolar complex between the cationic amino acid transporter 1 and endothelial nitric-oxide synthase may explain the “arginine paradox”. J Biol Chem. 1997;272(50):31213-31216.

    Article  PubMed  CAS  Google Scholar 

  8. Mundy AL, Dorrington KL. Inhibition of nitric oxide synthesis augments pulmonary oedema in isolated perfused rabbit lung. Br J Anaesth. 2000;85(4):570-576.

    Article  PubMed  CAS  Google Scholar 

  9. Shelton JL, Wang L, Cepinskas G, Inculet R, Mehta S. Human neutrophil-pulmonary microvascular endothelial cell interactions in vitro: differential effects of nitric oxide vs. peroxynitrite. Microvasc Res. 2008;76(2):80-88.

    Article  PubMed  CAS  Google Scholar 

  10. Farley KS, Wang LF, Razavi HM, et al. Effects of macrophage inducible nitric oxide synthase in murine septic lung injury. Am J Physiol Lung Cell Mol Physiol. 2006;290(6):L1164-L1172.

    Article  PubMed  CAS  Google Scholar 

  11. Sittipunt C, Steinberg KP, Ruzinski JT, et al. Nitric oxide and nitrotyrosine in the lungs of patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001;163(2):503-510.

    PubMed  CAS  Google Scholar 

  12. Razavi HM, Wang IF, Weicker S, et al. Pulmonary neutrophil infiltration in murine sepsis: role of inducible nitric oxide synthase. Am J Respir Crit Care Med. 2004;170(3):227-233.

    Article  PubMed  Google Scholar 

  13. Schmidt HH, Lohmann SM, Walter U. The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochim Biophys Acta. 1993;1178(2):153-175.

    Article  PubMed  CAS  Google Scholar 

  14. Dal SD, Paron JA, de Oliveira SH, Ferreira SH, Silva JS, Cunha FQ. Neutrophil migration in inflammation: nitric oxide inhibits rolling, adhesion and induces apoptosis. Nitric Oxide. 2003;9(3):153-164.

    Article  Google Scholar 

  15. Dal SD, Moreira AP, Freitas A, et al. Nitric oxide inhibits neutrophil migration by a mechanism dependent on ICAM-1: role of soluble guanylate cyclase. Nitric Oxide. 2006;15(1):77-86.

    Article  Google Scholar 

  16. Rios-Santos F, ves Filho JC, Souto FO, et al. Down-regulation of CXCR2 on neutrophils in severe sepsis is mediated by inducible nitric oxide synthase-derived nitric oxide. Am J Respir Crit Care Med. 2007;175(5):490-497.

    Article  PubMed  CAS  Google Scholar 

  17. Emerson M, Momi S, Paul W, Alberti PF, Page C, Gresele P. Endogenous nitric oxide acts as a natural antithrombotic agent in vivo by inhibiting platelet aggregation in the pulmonary vasculature. Thromb Haemost. 1999;81(6):961-966.

    PubMed  CAS  Google Scholar 

  18. Nong Z, Hoylaerts M, Van PN, Collen D, Janssens S. Nitric oxide inhalation inhibits platelet aggregation and platelet-mediated pulmonary thrombosis in rats. Circ Res. 1997;81(5):865-869.

    Article  PubMed  CAS  Google Scholar 

  19. Gries A, Bottiger BW, Dorsam J, et al. Inhaled nitric oxide inhibits platelet aggregation after pulmonary embolism in pigs. Anesthesiology. 1997;86(2):387-393.

    Article  PubMed  CAS  Google Scholar 

  20. Gkaliagkousi E, Ritter J, Ferro A. Platelet-derived nitric oxide signaling and regulation. Circ Res. 2007;101(7):654-662.

    Article  PubMed  CAS  Google Scholar 

  21. Radomski MW, Palmer RM, Moncada S. Characterization of the L-arginine:nitric oxide pathway in human platelets. Br J Pharmacol. 1990;101(2):325-328.

    Article  PubMed  CAS  Google Scholar 

  22. Wessel DL, Adatia I, Giglia TM, Thompson JE, Kulik TJ. Use of inhaled nitric oxide and acetylcholine in the evaluation of pulmonary hypertension and endothelial function after cardiopulmonary bypass. Circulation. 1993;88(5 pt 1):2128-2138.

    Article  PubMed  CAS  Google Scholar 

  23. Angdin M, Settergren G, Astudillo R, Liska J. Altered reactivity to acetylcholine in the pulmonary circulation after cardiopulmonary bypass is part of reperfusion injury. J Clin Anesth. 1998;10(2):126-132.

    Article  PubMed  CAS  Google Scholar 

  24. Angdin M, Settergren G. Acetylcholine reactivity in the pulmonary artery during cardiac surgery in patients with ischemic or valvular heart disease. J Cardiothorac Vasc Anesth. 1997;11(4):458-462.

    Article  PubMed  CAS  Google Scholar 

  25. Hayashi Y, Sawa Y, Fukuyama N, Nakazawa H, Matsuda H. Inducible nitric oxide production is an adaptation to cardiopulmonary bypass-induced inflammatory response. Ann Thorac Surg. 2001;72(1):149-155.

    Article  PubMed  CAS  Google Scholar 

  26. Yuen IS, Hartsky MA, Snajdr SI, Warheit DB. Time course of chemotactic factor generation and neutrophil recruitment in the lungs of dust-exposed rats. Am J Respir Cell Mol Biol. 1996;15(2):268-274.

    PubMed  CAS  Google Scholar 

  27. Yu YM, Ryan CM, Burke JF, Tompkins RG, Young VR. Relations among arginine, citrulline, ornithine, and leucine kinetics in adult burn patients. Am J Clin Nutr. 1995;62(5): 960-968.

    PubMed  CAS  Google Scholar 

  28. Yu YM, Sheridan RL, Burke JF, Chapman TE, Tompkins RG, Young VR. Kinetics of plasma arginine and leucine in pediatric burn patients. Am J Clin Nutr. 1996;64(1):60-66.

    PubMed  CAS  Google Scholar 

  29. Yu YM, Ryan CM, Castillo L, et al. Arginine and ornithine kinetics in severely burned patients: increased rate of arginine disposal. Am J Physiol Endocrinol Metab. 2001; 280(3):E509-E517.

    PubMed  CAS  Google Scholar 

  30. Schapira RM, Wiessner JH, Morrisey JF, Almagro UA, Nelin LD. L-arginine uptake and metabolism by lung macrophages and neutrophils following intratracheal instillation of silica in vivo. Am J Respir Cell Mol Biol. 1998;19(2):308-315.

    PubMed  CAS  Google Scholar 

  31. Chang R, Chicoine LG, Cui H, et al. Cytokine-induced arginase activity in pulmonary endothelial cells is dependent on Src family tyrosine kinase activity. Am J Physiol Lung Cell Mol Physiol. 2008;295(4):L688-L697.

    Article  PubMed  CAS  Google Scholar 

  32. Zharikov SI, Herrera H, Block ER. Role of membrane potential in hypoxic inhibition of L-arginine uptake by lung endothelial cells. Am J Physiol. 1997;272(1 pt 1): L78-L84.

    PubMed  CAS  Google Scholar 

  33. Szabo C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov. 2007;6(8):662-680.

    Article  PubMed  CAS  Google Scholar 

  34. Gao J, Zhao WX, Zhou LJ, et al. Protective effects of propofol on lipopolysaccharide-activated endothelial cell barrier dysfunction. Inflamm Res. 2006;55(9):385-392.

    Article  PubMed  CAS  Google Scholar 

  35. Mazzon E, De SA, Caputi AP, Cuzzocrea S. Role of tight junction derangement in the endothelial dysfunction elicited by exogenous and endogenous peroxynitrite and poly(ADP-ribose) synthetase. Shock. 2002;18(5):434-439.

    Article  PubMed  Google Scholar 

  36. Shelton JL, Wang L, Cepinskas G, et al. Inducible NO synthase (iNOS) in human neutrophils but not pulmonary microvascular endothelial cells (PMVEC) mediates septic protein leak in vitro. Microvasc Res. 2007;74(1):23-31.

    Article  PubMed  CAS  Google Scholar 

  37. Beckman DL, Mehta P, Hanks V, Rowan WH, Liu L. Effects of peroxynitrite on pulmonary edema and the oxidative state. Exp Lung Res. 2000;26(5):349-359.

    Article  PubMed  CAS  Google Scholar 

  38. Moore TM, Khimenko PL, Wilson PS, Taylor AE. Role of nitric oxide in lung ischemia and reperfusion injury. Am J Physiol. 1996;271(5 pt 2):H1970-H1977.

    PubMed  CAS  Google Scholar 

  39. Yoshida K, Yoshimura K, Haniuda M. L-arginine inhibits ischemia-reperfusion lung injury in rabbits. J Surg Res. 1999;85(1):9-16.

    Article  PubMed  CAS  Google Scholar 

  40. Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A. 1991;88(11):4651-4655.

    Article  PubMed  CAS  Google Scholar 

  41. Sheridan BC, McIntyre RC Jr, Meldrum DR, Fullerton DA. L-arginine prevents lung neutrophil accumulation and preserves pulmonary endothelial function after endotoxin. Am J Physiol. 1998;274(3 pt 1):L337-L342.

    PubMed  CAS  Google Scholar 

  42. Yang Y, Su Z, Cai J, et al. Continuous pulmonary infusion of L-arginine during deep hypothermia and circulatory arrest improves pulmonary surfactant integrity in piglets. Ann Thorac Surg. 2008;86(2):429-435.

    Article  PubMed  Google Scholar 

  43. Calkins CM, Bensard DD, Heimbach JK, et al. L-arginine attenuates lipopolysaccharide-induced lung chemokine production. Am J Physiol Lung Cell Mol Physiol. 2001;280(3):L400-L408.

    PubMed  CAS  Google Scholar 

  44. Meldrum DR, McIntyre RC, Sheridan BC, Cleveland JC Jr, Fullerton DA, Harken AH. L-arginine decreases alveolar macrophage proinflammatory monokine production during acute lung injury by a nitric oxide synthase-dependent mechanism. J Trauma. 1997;43(6):888-893.

    Article  PubMed  CAS  Google Scholar 

  45. Sun P, Wang J, Mehta P, Beckman DL, Liu L. Effect of nitric oxide on lung surfactant secretion. Exp Lung Res. 2003;29(5):303-314.

    Article  PubMed  CAS  Google Scholar 

  46. Bruni R, Fan BR, David-Cu R, Taeusch HW, Walther FJ. Inactivation of surfactant in rat lungs. Pediatr Res. 1996;39(2):236-240.

    Article  PubMed  CAS  Google Scholar 

  47. Liaudet L, Soriano FG, Szabo C. Biology of nitric oxide signaling. Crit Care Med. 2000;28(4 suppl):N37-N52.

    Article  PubMed  CAS  Google Scholar 

  48. Aktan F. iNOS-mediated nitric oxide production and its regulation. Life Sci. 2004;75(6):639-653.

    Article  PubMed  CAS  Google Scholar 

  49. Souza-Costa DC, Zerbini T, Metzger IF, Rocha JB, Gerlach RF, Tanus-Santos JE. l-Arginine attenuates acute pulmonary embolism-induced oxidative stress and pulmonary hypertension. Nitric Oxide. 2005;12(1):9-14.

    Article  PubMed  CAS  Google Scholar 

  50. Li H, Wallerath T, Munzel T, Forstermann U. Regulation of endothelial-type NO synthase expression in pathophysiology and in response to drugs. Nitric Oxide. 2002;7(3):149-164.

    Article  PubMed  CAS  Google Scholar 

  51. Schulze-Neick I, Penny DJ, Rigby ML, et al. L-arginine and substance P reverse the pulmonary endothelial dysfunction caused by congenital heart surgery. Circulation. 1999;100(7):749-755.

    Article  PubMed  CAS  Google Scholar 

  52. Fischmann TO, Hruza A, Niu XD, et al. Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation. Nat Struct Biol. 1999;6(3):233-242.

    Article  PubMed  CAS  Google Scholar 

  53. Garvey EP, Oplinger JA, Furfine ES, et al. 1400W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo. J Biol Chem. 1997;272(8):4959-4963.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanmin Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Yang, Y., Cai, J. (2010). L-Arginine and Ischemia-Reperfusion Injury. In: Gabriel, E., Salerno, T. (eds) Principles of Pulmonary Protection in Heart Surgery. Springer, London. https://doi.org/10.1007/978-1-84996-308-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-308-4_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-307-7

  • Online ISBN: 978-1-84996-308-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics