Skip to main content

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 1709 Accesses

Abstract

Max-algebra is introduced as the linear algebra built upon linearly ordered commutative groups. The book is presented for the additive group of reals but the most typical alternative ground sets are listed. Following the essential definitions the concepts that play a key role in max-algebra are studied: the maximum cycle mean, transitive closures, conjugation and the assignment problem. This includes Karp’s algorithm for finding the maximum cycle mean and the Floyd-Warshall algorithm for finding the transitive closures. Essential properties of subeigenvectors are presented in this chapter; a detailed analysis of eigenvectors is postponed to Chap. 4.

Two types of problems that are of particular interest in this book, feasibility and reachability, are presented. They are related to the tasks of finding a steady regime in multi-machine interactive production processes and to synchronization and optimization of these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Except Sect. 1.4 and in the proof of Theorem 8.1.4.

References

  1. Akian, M., Bapat, R., & Gaubert, S. (2007). Max-plus algebras. In L. Hogben, R. Brualdi, A. Greenbaum, & R. Mathias (Eds.), Discrete mathematics and its applications : Vol. 39. Handbook of linear algebra. Boca Raton: Chapman & Hall/CRC. Chap. 25.

    Google Scholar 

  2. Baccelli, F. L., Cohen, G., Olsder, G.-J., & Quadrat, J.-P. (1992). Synchronization and linearity. Chichester: Wiley.

    MATH  Google Scholar 

  3. Braker, J. G., & Olsder, G. J. (1993). The power algorithm in max algebra. Linear Algebra and Its Applications, 182, 67–89.

    Article  MathSciNet  MATH  Google Scholar 

  4. Burkard, R. E., & Butkovič, P. (2003). Finding all essential terms of a characteristic maxpolynomial. Discrete Applied Mathematics, 130, 367–380.

    Article  MathSciNet  MATH  Google Scholar 

  5. Burkard, R. E., & Butkovič, P. (2003). Max algebra and the linear assignment problem. Mathematical Programming Series B, 98, 415–429.

    Article  Google Scholar 

  6. Burkard, R. E., & Çela, E. (1999). Linear assignment problems and extensions. In P. M. Pardalos & D.-Z. Du (Eds.), Handbook of combinatorial optimization. Supplement Volume A (pp. 75–149). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  7. Burkard, R. E., Dell’Amico, M., & Martello, S. (2009). Assignment problems. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  8. Butkovič, P. (1994). Strong regularity of matrices—a survey of results. Discrete Applied Mathematics, 48, 45–68.

    Article  MathSciNet  MATH  Google Scholar 

  9. Butkovič, P. (2007). A note on the parity assignment problem. Optimization, 56(4), 419–424.

    Article  MathSciNet  MATH  Google Scholar 

  10. Butkovič, P., & Cuninghame-Green, R. A. (1992). An algorithm for the maximum cycle mean of an n×n bivalent matrix. Discrete Applied Mathematics, 35, 157–162.

    Article  MathSciNet  MATH  Google Scholar 

  11. Butkovič, P., & Schneider, H. (2005). Applications of max-algebra to diagonal scaling of matrices. Electronic Journal of Linear Algebra, 13, 262–273.

    MathSciNet  MATH  Google Scholar 

  12. Carré, B. A. (1971). An algebra for network routing problems. Journal of the Institute of Mathematics and Its Applications, 7, 273.

    Article  MathSciNet  MATH  Google Scholar 

  13. Cechlárová, K. (2005). Eigenvectors of interval matrices over max-plus algebra. Discrete Applied Mathematics, 150(1–3), 2–15.

    Article  MathSciNet  MATH  Google Scholar 

  14. Cochet-Terrasson, J., Cohen, G., Gaubert, S., Mc Gettrick, M., & Quadrat, J.-P. (1998). Numerical computation of spectral elements in max-plus algebra. In IFAC conference on system structure and control.

    Google Scholar 

  15. Cohen, G., Dubois, D., Quadrat, J.-P., & Viot, M. (1985). A linear-system-theoretic view of discrete-event processes and its use for performance evaluation in manufacturing. IEEE Transactions on Automatic Control, AC-30(3).

    Google Scholar 

  16. Coppersmith, D., & Winograd, S. (1990). Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation, 9, 251–280.

    Article  MathSciNet  MATH  Google Scholar 

  17. Cuninghame-Green, R. A. (1960). Process synchronisation in a steelworks—a problem of feasibility. In Banbury & Maitland (Eds.), Proc. 2nd int. conf. on operational research (pp. 323–328). London: English University Press.

    Google Scholar 

  18. Cuninghame-Green, R. A. (1962). Describing industrial processes with interference and approximating their steady-state behaviour. Operations Research Quarterly, 13, 95–100.

    Article  Google Scholar 

  19. Cuninghame-Green, R. A. (1976). Projections in minimax algebra. Mathematical Programming, 10(1), 111–123.

    Article  MathSciNet  MATH  Google Scholar 

  20. Cuninghame-Green, R. A. (1979). Lecture notes in economics and math systems : Vol. 166. Minimax algebra. Berlin: Springer. (Downloadable from http://web.mat.bham.ac.uk/P.Butkovic/).

    Book  MATH  Google Scholar 

  21. Cuninghame-Green, R. A. (1991). Minimax algebra and applications. Fuzzy Sets and Systems, 41, 251–267.

    Article  MathSciNet  MATH  Google Scholar 

  22. Cuninghame-Green, R. A. (1995). Minimax algebra and applications. In Advances in imaging and electron physics (Vol. 90, pp. 1–121). New York: Academic Press.

    Google Scholar 

  23. Dantzig, G. B., Blattner, W., & Rao, M. R. (1967). Finding a cycle in a graph with minimum cost to time ratio with application to a ship routing problem. In P. Rosenstiehl (Ed.), Theory of graphs (pp. 77–84). Paris: Dunod.

    Google Scholar 

  24. Elsner, L., & van den Driessche, P. (1999). On the power method in max-algebra. Linear Algebra and Its Applications, 302/303, 17–32.

    Article  Google Scholar 

  25. Elsner, L., & van den Driessche, P. (2001). Modifying the power method in max algebra. Linear Algebra and Its Applications, 332/334, 3–13. Proceedings of the Eighth Conference of the International Linear Algebra Society (Barcelona, 1999).

    Article  Google Scholar 

  26. Engel, G. M., & Schneider, H. (1973). Cyclic and diagonal products on a matrix. Linear Algebra and Its Applications, 7, 301–335.

    Article  MathSciNet  MATH  Google Scholar 

  27. Engel, G. M., & Schneider, H. (1975). Diagonal similarity and equivalence for matrices over groups with 0. Czechoslovak Mathematical Journal, 25, 389–403.

    MathSciNet  Google Scholar 

  28. Fiedler, M., & Pták, V. (1967). Diagonally dominant matrices. Czechoslovak Mathematical Journal, 92, 420–433.

    MathSciNet  Google Scholar 

  29. Gaubert, S. (1992). Théorie des systèmes linéaires dans les dioïdes. Thèse, Ecole des Mines de Paris.

    Google Scholar 

  30. Gaubert, S., & Katz, R. (2006). Reachability problems for products of matrices in semirings. International Journal of Algebra and Computation, 16(3), 603–627.

    Article  MathSciNet  MATH  Google Scholar 

  31. Gaubert, S. et al. (1998). Algèbres max-plus et applications en informatique et automatique. 26ème école de printemps d’informatique théorique Noirmoutier.

    Google Scholar 

  32. Gavalec, M., & Plávka, J. (2006). Computing an eigenvector of a Monge matrix in max-plus algebra. Mathematical Methods of Operations Research, 63(3), 543–551.

    Article  MathSciNet  Google Scholar 

  33. Giffler, B. (1963). Scheduling general production systems using schedule algebra. Naval Research Logistics Quarterly, 10, 237–255.

    Article  Google Scholar 

  34. Giffler, B. (1968). Schedule algebra: a progress report. Naval Research Logistics Quarterly, 15, 255–280.

    Google Scholar 

  35. Gondran, M. (1975). Path algebra and algorithms. In B. Roy (Ed.), NATO advanced study inst. ser., ser. C: Math. and phys. sci. : Vol. 19. Combinatorial programming: methods and applications (pp. 137–148). Reidel: Dordrecht. (Proc NATO Advanced Study Inst, Versailles, 1974).

    Chapter  Google Scholar 

  36. Gondran, M., & Minoux, M. (1977). Valeurs propres et vecteur propres dans les dioïdes et leur interprétation en théorie des graphes. Bulletin de la Direction des Etudes et Recherches Serie C Mathematiques et Informatiques (2), 25–41.

    Google Scholar 

  37. Gondran, M., & Minoux, M. (1978). L’indépendance linéaire dans les dioïdes. Bulletin de la Direction Etudes et Recherches. EDF, Série C, 1, 67–90.

    MathSciNet  Google Scholar 

  38. Gondran, M., & Minoux, M. (1984). Linear algebra of dioïds: a survey of recent results. Annals of Discrete Mathematics, 19, 147–164.

    MathSciNet  Google Scholar 

  39. Gunawardena, J. (Ed.) (1998). Publications of the INI Cambridge : Vol. 11. Idempotency. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  40. Heidergott, B., Olsder, G. J., & van der Woude, J. (2005). Max plus at work: modeling and analysis of synchronized systems. A course on max-plus algebra. Princeton: Princeton University Press.

    Google Scholar 

  41. Itenberg, I., Mikhalkin, I., & Shustin, E. (2009). Oberwolfach seminars : Vol. 35. Tropical algebraic geometry (2nd ed.). Berlin: Springer.

    Book  MATH  Google Scholar 

  42. Karp, R. M. (1978). A characterization of the minimum cycle mean in a digraph. Discrete Mathematics, 23, 309–311.

    MathSciNet  MATH  Google Scholar 

  43. Kolokoltsov, V. N., & Maslov, V. P. (1997). Idempotent analysis and its applications. Dordrecht: Kluwer Academic Publishers.

    Book  MATH  Google Scholar 

  44. Lawler, E. (1976). Combinatorial optimization—networks and matroids. New York: Holt, Rinehart and Winston.

    MATH  Google Scholar 

  45. Litvinov, G. L., & Maslov, V. P. (2005). Idempotent analysis and mathematical physics. In Contemporary mathematics : Vol. 377. International workshop, February 3–10, 2003, Erwin Schrödinger International Institute for Mathematical Physics, Vienna, Austria. Providence: American Mathematical Society.

    Google Scholar 

  46. MacLane, S., & Birkhoff, G. (1979). Algebra. New York: Macmillan.

    Google Scholar 

  47. Munro, I. (1971). Efficient determination of the transitive closure of a directed graph. Information Processing Letters, 1, 56–58.

    Article  MATH  Google Scholar 

  48. Papadimitriou, C. H., & Steiglitz, K. (1998). Combinatorial optimization—algorithms and complexity. Mineola: Dover Publications.

    MATH  Google Scholar 

  49. Plávka, J. (1996). Static maximum cycle mean problem of a trivalent matrix. Optimization, 37(2), 171–176.

    Article  MathSciNet  MATH  Google Scholar 

  50. Plávka, J. (2001). On eigenproblem for circulant matrices in max-algebra. Optimization, 50(5–6), 477–483.

    Article  MathSciNet  MATH  Google Scholar 

  51. Robertson, N., Seymour, P. D., & Thomas, R. (1999). Permanents, Pfaffian orientations and even directed circuits. Annals of Mathematics, 150(2), 929–975.

    Article  MathSciNet  MATH  Google Scholar 

  52. Schneider, H. (1988). The influence of the marked reduced graph of a nonnegative matrix on the Jordan form and on related properties: a survey. Linear Algebra and Its Applications, 84, 161–189.

    Article  Google Scholar 

  53. Schneider, H., & Schneider, M. H. (1991). Max-balancing weighted directed graphs and matrix scaling. Mathematics of Operations Research, 16(1), 208–222.

    Article  MathSciNet  MATH  Google Scholar 

  54. Sturmfels, B., Santos, F., & Develin, M. (2005). Discrete and computational geometry. In J. E. Goodman, J. Pach, & E. Welzl (Eds.), Mathematical sciences research institute publications : Vol. 52. On the tropical rank of a matrix (pp. 213–242). Cambridge: Cambridge University Press.

    Google Scholar 

  55. Tarjan, R. E. (1972). Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2), 146–160.

    Article  MathSciNet  MATH  Google Scholar 

  56. Vorobyov, N. N. (1967). Extremal algebra of positive matrices. Elektronische Informationsverarbeitung und Kybernetik, 3, 39–71 (in Russian).

    MathSciNet  Google Scholar 

  57. Vorobyov, N. N. (1970). Extremal algebra of nonnegative matrices. Elektronische Informationsverarbeitung und Kybernetik, 6, 303–311 (in Russian).

    MathSciNet  Google Scholar 

  58. Wagneur, E. (1988). Finitely generated moduloïds: The existence and unicity problem for bases. In J. L. Lions & A. Bensoussan (Eds.), Lecture notes in control and inform. sci. : Vol. 111. Analysis and optimization of systems, Antibes, 1988 (pp. 966–976). Berlin: Springer.

    Chapter  Google Scholar 

  59. Wagneur, E. (1991). Moduloïds and pseudomodules: 1. Dimension theory. Discrete Mathematics, 98, 57–73.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Butkovič, P. (2010). Introduction. In: Max-linear Systems: Theory and Algorithms. Springer Monographs in Mathematics. Springer, London. https://doi.org/10.1007/978-1-84996-299-5_1

Download citation

Publish with us

Policies and ethics