Skip to main content

Imaging of the Brain in Cardiac Surgery as a Tool in Brain Protection Studies

  • Chapter
  • First Online:
  • 1083 Accesses

Abstract

Computed tomography (CT) is based on the absorption of X-rays in tissue. Tissue density is correlated with the amount of radiation being absorbed. Tissue absorption values are expressed as Hounsfield units (HU). Per definition, water has an HU of 0. In brain tissue, acute hemorrhage results in an increase of absorption caused by the cellular components of the blood. In contrast to normal absorption values of brain tissue (35–45 HU), acute hemorrhage features absorption values of approximately 60–70 HU. Thus, acute hemorrhage appears as a hyperdense lesion (that is, bright lesion compared with brain tissue) with a mass effect. Due to the marked difference in tissue density, CT features a high sensitivity in the detection of blood and is the method of choice to rule out acute hemorrhage. In acute ischemic infarction of the brain, diagnosis on CT is based on increased water content in brain tissue resulting in a decrease of tissue density. Thereby, acute cerebral infarction presents as hypodense (i.e., dark) lesion relative to brain parenchyma. In the hyperacute phase (i.e., <2 h), acute cerebral infarction, in general, escapes diagnosis from CT since water shifts from the extra- to the intracellular space precede a significant increase in absolute water content. Large territorial infarction later on presents as hypodense space-occupying lesions 2 h after onset at the earliest, whereas small ischemic lesions may be identified only at later stages or not at all, especially if preexisting microangiopathy of the brain with diffuse white matter hypodensity is present. Therefore, CT, in general, is not suitable in monitoring the overall ischemic lesion load in studies assessing brain protection in cardiac surgery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahlgren E, Aren C. Cerebral complications after coronary artery bypass and heart valve surgery: risk factors and onset of symptoms. J Cardiothorac Vasc Anesth. 1998;12:270-273.

    Article  CAS  PubMed  Google Scholar 

  2. Barber PA, Hach S, Tippett LJ, Ross L, Merry AF, Milsom P. Cerebral ischemic lesions on diffusion-weighted imaging are associated with neurocognitive decline after cardiac surgery. Stroke. 2008;39:1427-1433.

    Article  CAS  PubMed  Google Scholar 

  3. Bendszus M, Koltzenburg M, Burger R, Warmuth-Metz M, Hofmann E, Solymosi L. Silent embolism in diagnostic cerebral angiography and neurointerventional procedures: a prospective study. Lancet. 1999;354:1594-1597.

    Article  CAS  PubMed  Google Scholar 

  4. Bendszus M, Reents W, Franke D, et al. Brain damage after coronary artery bypass grafting. Arch Neurol. 2002;59:1090-1095.

    Article  PubMed  Google Scholar 

  5. Bendszus M, Koltzenburg M, Bartsch AJ, et al. Heparin and air filters reduce embolic events caused by intra-arterial cerebral angiography: a prospective, randomized trial. Circulation. 2004;110:2210-2215.

    Article  CAS  PubMed  Google Scholar 

  6. Bendszus M, Stoll G. Silent ischemia: hidden fingerprints of invasive medical procedures. Lancet Neurol. 2006;5:364-372.

    Article  PubMed  Google Scholar 

  7. Burdette JH, Ricci PE, Petitti N, Elster AD. Cerebral infarction: time course of signal intensity changes on diffusion-weighted MR images. AJR Am J Roentgenol. 1998;171:791-795.

    CAS  PubMed  Google Scholar 

  8. Choi SH, Na DL, Chung CS, Lee KH, Na DG, Adair JC. Diffusion-weighted MRI in vascular dementia. Neurology. 2000;54:83-89.

    CAS  PubMed  Google Scholar 

  9. Conturo TE, McKinstry RC, Aronovitz JA, Neil JJ. Diffusion MRI: precision, accuracy and flow effects. NMR Biomed. 1995;8:307-332.

    Article  CAS  PubMed  Google Scholar 

  10. Cook DJ, Huston J 3rd, Trenerry MR, Brown RD Jr, Zehr KJ, Sundt TM 3rd. Postcardiac surgical cognitive impairment in the aged using diffusion-weighted magnetic resonance imaging. Ann Thorac Surg. 2007;83:1389-1395.

    Article  PubMed  Google Scholar 

  11. Djaiani G, Fedorko L, Borger M, et al. Mild to moderate atheromatous disease of the thoracic aorta and new ischemic brain lesions after conventional coronary artery bypass graft surgery. Stroke. 2004;35:356-358.

    Article  Google Scholar 

  12. Feiwell RJ, Besmertis L, Sarkar R, Saloner DA, Rapp JH. Detection of clinically silent infarcts after carotid endarterectomy by use of diffusion-weighted imaging. AJNR Am J Neuroradiol. 2001;22:646-649.

    CAS  PubMed  Google Scholar 

  13. Floyd TF, Shah PN, Price CC, et al. Clinically silent cerebral ischemic events after cardiac surgery: their incidence, regional vascular occurrence, and procedural dependence. Ann Thorac Surg. 2006;81:2160-2166.

    Article  PubMed  Google Scholar 

  14. Friday G, Sutter F, Curtin A, et al. Brain magnetic resonance imaging abnormalities following off-pump cardiac surgery. Heart Surg Forum. 2005;8:105-109.

    Article  Google Scholar 

  15. Gass A, Szabo K, Behrens S, Rossmanith C, Hennerici M. A diffusion-weighted MRI study of acute ischemic distal arm paresis. Neurology. 2001;57:1589-1594.

    CAS  PubMed  Google Scholar 

  16. Gauvrit JY, Delmaire C, Henon H, et al. Diffusion/perfusion-weighted magnetic resonance imaging after carotid angioplasty and stenting. J Neurol. 2004;251:1060-1067.

    Article  PubMed  Google Scholar 

  17. Gottesman RF, Sherman PM, Grega MA, et al. Watershed strokes after cardiac surgery: diagnosis, etiology, and outcome. Stroke. 2006;37:2306-2311.

    Article  PubMed  Google Scholar 

  18. Higer HP, Bielke G. Tissue characterization in MR-imaging. Berlin/Heidelberg/Paris/London/New York/Tokyo: Springer; 1990.

    Google Scholar 

  19. Jaeger HJ, Mathias KD, Hauth E, et al. Cerebral ischemia detected with diffusion-weighted MR imaging after stent implantation in the carotid artery. AJNR Am J Neuroradiol. 2002;23:200-207.

    PubMed  Google Scholar 

  20. Kang DW, Latour LL, Chalela JA, Dambrosia J, Warach S. Early ischemic lesion recurrence within a week after acute ischemic stroke. Ann Neurol. 2003;54:66-74.

    Article  PubMed  Google Scholar 

  21. Kidwell CS, Alger JR, Di Salle F, et al. Diffusion MRI in patients with transient ischemic attacks. Stroke. 1999;30:1174-1180.

    CAS  PubMed  Google Scholar 

  22. Knipp SC, Matatko N, Wilhelm H, et al. Evaluation of brain injury after coronary artery bypass grafting. A prospective study using neuropsychological assessment and diffusion-weighted magnetic resonance imaging. Eur J Cardiothorac Surg. 2004;25:791-800.

    Article  PubMed  Google Scholar 

  23. Knipp SC, Matatko N, Schlamann M, et al. Small ischemic brain lesions after cardiac valve replacement detected by diffusion-weighted magnetic resonance imaging: relation to neurocognitive function. Eur J Cardiothorac Surg. 2005;28:88-96.

    Article  PubMed  Google Scholar 

  24. Knipp SC, Matatko N, Wilhelm H, et al. Cognitive outcomes three years after coronary artery bypass surgery: relation to diffusion-weighted magnetic resonance imaging. Ann Thorac Surg. 2008;85:872-879.

    Article  PubMed  Google Scholar 

  25. Kucharczyk J, Mintorovitch J, Asgari HS, Moseley M. Diffusion/perfusion MR imaging of acute cerebral ischemia. Magn Reson Med. 1991;19:311-315.

    Article  CAS  PubMed  Google Scholar 

  26. Lund C, Nes RB, Ugelstad TP, et al. Cerebral emboli during left heart catheterization may cause acute brain injury. Eur Heart J. 2005;26:1269-1275.

    Article  PubMed  Google Scholar 

  27. Lund C, Sundet K, Tennøe B, et al. Cerebral ischemic injury and cognitive impairment after off-pump and on-pump coronary artery bypass grafting surgery. Ann Thorac Surg. 2005;80:2126-2131.

    Article  PubMed  Google Scholar 

  28. Marks MP, de Crespigny A, Lentz D, Enzmann DR, Albers GW, Moseley ME. Acute and chronic stroke: navigated spin-echo diffusion-weighted MR imaging. Radiology. 1996;199:403-408.

    CAS  PubMed  Google Scholar 

  29. Mathisen L, Andersen MH, Hol PK, et al. Preoperative cerebral ischemic lesions predict physical health status after on-pump coronary artery bypass surgery. J Thorac Cardiovasc Surg. 2005;130:1691-1697.

    Article  PubMed  Google Scholar 

  30. Moseley ME, Cohen Y, Mintorovitch J, et al. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med. 1990;14:330-346.

    Article  CAS  PubMed  Google Scholar 

  31. Muller M, Reiche W, Langenscheidt P, Hassfeld J, Hagen T. Ischemia after carotid endarterectomy: comparison between transcranial Doppler sonography and diffusion-weighted MR imaging. AJNR Am J Neuroradiol. 2000;21:47-54.

    CAS  PubMed  Google Scholar 

  32. Mullins ME, Schaefer PW, Sorensen AG, et al. CT and conventional and diffusion-weighted MR imaging in acute stroke: study in 691 patients at presentation to the emergency department. Radiology. 2002;224:353-360.

    Article  PubMed  Google Scholar 

  33. Omran H, Schmidt H, Hackenbroch M, et al. Silent and apparent cerebral embolism after retrograde catheterisation of the aortic valve in valvular stenosis: a prospective, randomised study. Lancet. 2003;361:1241-1246.

    Article  PubMed  Google Scholar 

  34. Restrepo L, Wityk RJ, Grega MA, et al. Diffusion- and perfusion-weighted magnetic resonance imaging of the brain before and after coronary artery bypass grafting surgery. Stroke. 2002;33:2909-2915.

    Article  PubMed  Google Scholar 

  35. Ringer TM, Neumann-Haefelin T, Sobel RA, Moseley ME, Yenari MA. Reversal of early diffusion-weighted magnetic resonance imaging abnormalities does not necessarily reflect tissue salvage in experimental cerebral ischemia. Stroke. 2001;32:2362-2369.

    Article  CAS  PubMed  Google Scholar 

  36. Roach GW, Kanchuger M, Mangano CM, et al. Adverse cerebral outcomes after coronary bypass surgery. Multicenter Study of Perioperative Ischemia Research Group and the Ischemia Research and Education Foundation Investigators. N Engl J Med. 1996;335:1857-1863.

    Article  CAS  PubMed  Google Scholar 

  37. Schmidt R, Fazekas F, Offenbacher H, et al. Brain magnetic resonance imaging in coronary artery bypass grafts: a pre- and postoperative assessment. Neurology. 1993;43:775-778.

    CAS  PubMed  Google Scholar 

  38. Selnes OA, Goldsborough MA, Borowicz LM, McKhann GM. Neurobehavioural sequelae of cardiopulmonary bypass. Lancet. 1999;353:1601-1606.

    Article  CAS  PubMed  Google Scholar 

  39. Stolz E, Gerriets T, Kluge A, Klovekorn WP, Kaps M, Bachmann G. Diffusion-weighted magnetic resonance imaging and neurobiochemical markers after aortic valve replacement: implications for future neuroprotective trials? Stroke. 2004;35:888-892.

    Article  PubMed  Google Scholar 

  40. Sudo K, Kishimoto R, Tajima Y, Matsumoto A, Tashiro K. A paralysed thumb. Lancet. 2004;363:1364.

    Article  PubMed  Google Scholar 

  41. Toner I, Hamid SK, Peden CJ, Taylor KM, Smith PL. Magnetic resonance imaging and P300 (event-related auditory evoked potentials) in the assessment of postoperative cerebral injury following coronary artery bypass graft surgery. Perfusion. 1993;8:321-329.

    Article  CAS  PubMed  Google Scholar 

  42. Wityk RJ, Goldsborough MA, Hillis A, et al. Diffusion- and perfusion-weighted brain magnetic resonance imaging in patients with neurologic complications after cardiac surgery. Arch Neurol. 2001;58:571-576.

    Article  CAS  PubMed  Google Scholar 

  43. Restrepo L, Wityk RJ, Grega MA, et al. Diffusion- and perfusion-weighted magnetic resonance imaging of the brain before and after coronary artery bypass grafting surgery. Stroke. 2002; 33: 2909-2915.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bendszus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Bendszus, M. (2011). Imaging of the Brain in Cardiac Surgery as a Tool in Brain Protection Studies. In: Bonser, R., Pagano, D., Haverich, A. (eds) Brain Protection in Cardiac Surgery. Springer, London. https://doi.org/10.1007/978-1-84996-293-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-293-3_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-292-6

  • Online ISBN: 978-1-84996-293-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics