Skip to main content

Cardiopulmonary Bypass Circuit and the Brain

  • Chapter
  • First Online:
Brain Protection in Cardiac Surgery

Abstract

Credit for the development of modern day cardiopulmonary bypass (CPB) is usually given to John Gibbons, who produced a functional heart–lung machine at the Mayo Clinic in the early 1950s.1 The development of the CPB circuit and the field of perfusion in general have been instrumental in the advancement of cardiac surgery over the last 5 decades. However, important neurologic complications were described shortly after the widespread adoption of CPB.2,3 Such central nervous system complications range from subclinical cognitive dysfunction to delirium, to focal stroke, to coma and/or death. An ever-increasing number of clinical and basic research investigations have focused on the impact of CPB on neurologic complications since the 1980s.4–12

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gibbon JH Jr. The application of a mechanical heart and lung apparatus to cardiac surgery. Minn Med. 1954;37:171-185.

    PubMed  Google Scholar 

  2. Caguin F, Carter MG. Fat embolization with cardiotomy with the use of cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1963;46:665-672.

    CAS  PubMed  Google Scholar 

  3. Gilman S. Cerebral disorders after open-heart operations. N Engl J Med. 1965;272:489-498.

    Article  CAS  PubMed  Google Scholar 

  4. Roach GW, Kanchuger M, Mora M, et al. Adverse cerebral outcomes after coronary bypass surgery. N Engl J Med. 1996;335:1857-1863.

    Article  CAS  PubMed  Google Scholar 

  5. Moody DM, Bell MA, Challa VR, Johnston WE, Prough DS. Brain microemboli during cardiac surgery or aortography. Ann Neurol. 1990;28:477-486.

    Article  CAS  PubMed  Google Scholar 

  6. Shaw PJ, Bates D, Cartlidge NE, et al. Neurologic and neuropsychological morbidity following major surgery: Comparison of coronary artery bypass and peripheral vascular surgery. Stroke. 1987;18:700-707.

    CAS  PubMed  Google Scholar 

  7. Wong BI, McLean RF, Naylor CD, et al. Central nervous system dysfunction after warm or hypothermic cardiopulmonary bypass. Lancet. 1992;339:1383-1384.

    Article  CAS  PubMed  Google Scholar 

  8. Shaw PJ, Bates D, Cartlidge NE, Heaviside D, Julian DG, Shaw DA. Early neurological complications of coronary artery bypass surgery. BMJ. 1985;291:1384-1387.

    Article  CAS  PubMed  Google Scholar 

  9. Savageau JA, Stanton B, Jenkins CD, Klein MD. Neuropsychological dysfunction following elective cardiac operation. I. Early assessment. J Thorac Cardiovasc Surg. 1982;84:585-594.

    CAS  PubMed  Google Scholar 

  10. Murkin JM, Newman SP, Stump DA, Blumenthal JA. Statement of consensus on assessment of neurobehavioral outcomes after cardiac surgery. Ann Thorac Surg. 1995;59:1289-1295.

    Article  CAS  PubMed  Google Scholar 

  11. Hammon JW, Stump DA, Kon ND, et al. Risk factors and solutions for the development of neurobehavioral changes after coronary artery bypass grafting. Ann Thorac Surg. 1997;63:1613-1618.

    Article  PubMed  Google Scholar 

  12. Newman MF, Kirchner JL, Phillips-Bute B, et al. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001;344:395-402.

    Article  CAS  PubMed  Google Scholar 

  13. Clark RE, Brillman J, Davis DA, Lovell MR, Price TR, Magovern GJ. Microemboli during coronary artery bypass grafting. Genesis and effect on outcome. J Thorac Cardiovasc Surg. 1995;109:249-257.

    Article  CAS  PubMed  Google Scholar 

  14. Borger MA, Peniston CM, Weisel RD, Vasiliou M, Green REA, Feindel CM. Neuropsychological impairment after coronary bypass surgery: effect of gaseous emboli during perfusionist interventions. J Thorac Cardiovasc Surg. 2001;121:743-749.

    Article  CAS  PubMed  Google Scholar 

  15. Murkin JM. Cardiopulmonary bypass and the inflammatory response: a role for serine protease inhibitors? J Cardiothorac Vasc Anesth. 1997;11:19-23.

    Article  CAS  PubMed  Google Scholar 

  16. Selnes OA, Grega MA, Borowicz LM, et al. Cognitive outcomes three years after coronary artery bypass surgery: a comparison of on-pump coronary artery bypass graft surgery patients and nonsurgical controls. Ann Thorac Surg. 2005;79:1201-1209.

    Article  PubMed  Google Scholar 

  17. Selnes OA, Grega MA, Bailey MM, et al. Neurocognitive outcomes three years after coronary artery bypass graft ­surgery: a controlled study. Ann Thorac Surg. 2007;84:1885-1896.

    Article  PubMed  Google Scholar 

  18. Sweet JJ, Finnin E, Wolfe PL, et al. Absence of cognitive decline one year after coronary bypass surgery: comparison to nonsurgical and healthy controls. Ann Thorac Surg. 2008;85:1571-1578.

    Article  PubMed  Google Scholar 

  19. Borger MA, Peniston CM, Weisel RD, et al. Decreasing incidence of stroke during valvular surgery. Circulation. 1998;98:II137-II143.

    CAS  PubMed  Google Scholar 

  20. Bucerius J, Gummert JF, Borger MA, et al. Stroke after cardiac surgery – a risk factor analysis in 16, 184 consecutive adult patients. Ann Thorac Surg. 2003;75:472-478.

    Article  PubMed  Google Scholar 

  21. John R, Choudhri AF, Weinberg AD, et al. Multicenter review of preoperative risk factors for stroke after coronary artery bypass grafting. Ann Thorac Surg. 2000;69:30-36.

    Article  CAS  PubMed  Google Scholar 

  22. Bucerius J, Gummert JF, Borger MA, et al. Predictors of delirium after cardiac surgery delirium: effect of beating-heart (off-pump) surgery. J Thorac Cardiovasc Surg. 2004;127:57-64.

    Article  PubMed  Google Scholar 

  23. McKhann GM, Grega MA, Borowicz LM, et al. Encephalopathy and stroke after coronary artery bypass grafting: incidence, consequences and prediction. Arch Neurol. 2002;59:1422-1428.

    Article  PubMed  Google Scholar 

  24. Baumgartner WA. Neuroprotection in cardiac surgery. Ann Thorac Surg. 2005;79:S2254-S2256.

    Article  PubMed  Google Scholar 

  25. Prasongsukarn K, Borger MA. Reducing cerebral emboli during cardiopulmonary bypass. Sem Cardiothorac Vasc Anesth. 2005;9:153-158.

    Article  Google Scholar 

  26. Barbut D, Yi-Wen L, Gold JP, et al. Impact of embolization during coronary artery bypass grafting on outcome and length of stay. Ann Thorac Surg. 1997;63:998-1002.

    Article  CAS  PubMed  Google Scholar 

  27. Blauth CI, Arnold JV, Schulenberg WE, McKhann GM, Taylor KM. Cerebral microembolism during cardiopulmonary bypass: retinal microvascular studies in vivo with fluorescein angiography. J Thorac Cardiovasc Surg. 1988;95:668-676.

    CAS  PubMed  Google Scholar 

  28. Blauth CI, Smith PL, Arnold JV, Jagoe JR, Wootton R, Taylor KM. Influence of oxygenator type on the prevalence and extent of microembolic retinal ischemia during cardiopulmonary bypass. Assessment by digital image analysis. J Thorac Cardiovasc Surg. 1990;99:61-69.

    CAS  PubMed  Google Scholar 

  29. Cavarocchi NC, Pluth JR, Schaff HV, et al. Complement activation during cardiopulmonary bypass: comparison of bubble and membrane oxygenators. J Thorac Cardiovasc Surg. 1986;91:252-258.

    CAS  PubMed  Google Scholar 

  30. Videm V, Fosse E, Mollnes TE, Ellingsen O, Pedersen T, Karlsen H. Different oxygenators for cardiopulmonary bypass lead to varying degrees of human complement ­activation in vitro. J Thorac Cardiovasc Surg. 1989;97:764-770.

    CAS  PubMed  Google Scholar 

  31. Baker RA, Willcox TW. Australian and New Zealand perfusion survey: equipment and monitoring. J Extra Corpor Technol. 2006;38:220-229.

    PubMed  Google Scholar 

  32. Loop FD, Szabo J, Rowlinson RD, Urbanek K. Events related to microembolism during extracorporeal perfusion in man: effectiveness of in-line filtration recorded by ultrasound. Ann Thorac Surg. 1976;21:412-420.

    Article  CAS  PubMed  Google Scholar 

  33. Padayachee TS, Parsons S, Theobold R, Gosling RG, Deverall PB. The effect of arterial filtration on reduction of gaseous microemboli in the middle cerebral artery during cardiopulmonary bypass. Ann Thorac Surg. 1988;45:647-649.

    Article  CAS  PubMed  Google Scholar 

  34. Shann KG, Likosky DS, Murkin JM, et al. An evidence-based review of the practice of cardiopulmonary bypass in adults: a focus on neurologic injury, glycemic control, hemodilution, and the inflammatory response. J Thorac Cardiovasc Surg. 2006;132:283-290.

    Article  PubMed  Google Scholar 

  35. Whitaker DC, Newman SP, Stygall J, Hope-Wynne C, Harrison MJ, Walesby RK. The effect of leucocyte-depleting arterial line filters on cerebral microemboli and neuropsychological outcome following coronary artery bypass surgery. Eur J Cardiothorac Surg. 2004;25:267-274.

    Article  PubMed  Google Scholar 

  36. Whitaker DC, Stygall JA, Newmann SP, Harrison MJ. The use of leucocyte-depleting and conventional arterial line filters in cardiac surgery: a systematic review of clinical studies. Perfusion. 2001;16:433-446.

    CAS  PubMed  Google Scholar 

  37. Warren O, Alexiou C, Massey R, et al. The effects of various leucocyte filtration strategies in cardiac surgery. Eur J Cardiothorac Surg. 2007;31:665-676.

    Article  PubMed  Google Scholar 

  38. Schoenburg M, Kraus B, Muehling A, et al. The dynamic air bubble trap reduces cerebral microembolism during ­cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2003;126:1455-1460.

    Article  CAS  PubMed  Google Scholar 

  39. Sauren LDC, la Meir M, Palmen M, et al. New ultrasonic radiation reduces cerebral emboli during extracorporeal circulation. Eur J Cardiothorac Surg. 2007;32:274-280.

    Article  PubMed  Google Scholar 

  40. Heyer EJ, Lee KS, Manspeizer HE, et al. Heparin-bonded cardiopulmonary bypass circuits reduce cognitive dysfunction. J Cardiothorac Vasc Anesth. 2002;16:37-42.

    Article  PubMed  Google Scholar 

  41. Baufreton C, Allain P, Chevailler A, et al. Brain injury and neuropsychological outcome after coronary artery surgery are affected by complement activation. Ann Thorac Surg. 2005;79:1597-1605.

    Article  PubMed  Google Scholar 

  42. Svenmarker S, Sandstrom E, Karlsson T, et al. Neurological and general outcome in low-risk coronary artery bypass patients using heparin coated circuits. Eur J Cardiothorac Surg. 2001;19:47-53.

    Article  CAS  PubMed  Google Scholar 

  43. Morgan IS, Codispoti M, Sanger K, Mankad PS. Superiority of centrifugal pump over roller pump in paediatric cardiac surgery: prospective randomised trial. Eur J Cardiothorac Surg. 1998;13:526-532.

    Article  CAS  PubMed  Google Scholar 

  44. Scott DA, Silbert BS, Doyle TJ, et al. Centrifugal versus roller head pumps for cardiopulmonary bypass: effect on early neuropsychologic outcomes after coronary artery surgery. J Cardiothorac Vasc Anesth. 2002;16:715-722.

    Article  PubMed  Google Scholar 

  45. Parolari A, Alamanni F, Naliato M, et al. Adult cardiac surgery outcomes: role of the pump type. Eur J Cardiothorac Surg. 2000;18:575-582.

    Article  CAS  PubMed  Google Scholar 

  46. Mitchell SJ, Willcox T, Gorman DF. Bubble generation and venous air filtration by hard-shell venous reservoirs: a comparative study. Perfusion. 1997;12:325-333.

    CAS  PubMed  Google Scholar 

  47. Liu JF, Su ZK, Ding WX. Quantitation of particulate microemboli during cardiopulmonary bypass: experimental and clinical studies. Ann Thorac Surg. 1992;54:1196-1202.

    Article  CAS  PubMed  Google Scholar 

  48. Brooker RF, Brown WR, Moody DM, et al. Cardiotomy suction: a major source of brain lipid emboli during cardiopulmonary bypass. Ann Thorac Surg. 1998;65:1651-1655.

    Article  CAS  PubMed  Google Scholar 

  49. Brown WR, Moody DM, Challa VR, Stump DA, Hammon JW. Longer duration of cardiopulmonary bypass is associated with greater numbers of cerebral microemboli. Stroke. 2000;31:707-713.

    CAS  PubMed  Google Scholar 

  50. Kincaid EH, Jones TJ, Stump DA, et al. Processing scavenged blood with a cell saver reduces cerebral lipid microembolization. Ann Thorac Surg. 2000;70:1296-1300.

    Article  CAS  PubMed  Google Scholar 

  51. Hogue CW, Palin CA, Arrowsmith JE. Cardiopulmonary bypass management and neurologic outcomes: an evidence-based appraisal of current practices. Anesth Analg. 2006;103:21-37.

    Article  PubMed  Google Scholar 

  52. Rubens FD, Boodhwani M, Mesana T, et al. The cardiotomy trial: a randomized, double-blind study to assess the effect of processing of shed blood during cardiopulmonary bypass on transfusion and neurocognitive function. Circulation. 2007;116(Suppl):I89-I97.

    Article  PubMed  Google Scholar 

  53. Djaiani G, Fedorko L, Borger MA, et al. Continuous flow cell saver reduces cognitive decline in elderly patients after coronary bypass surgery. Circulation. 2007;116:1888-1895.

    Article  PubMed  Google Scholar 

  54. Benaroia M, Baker AJ, Mazer CD, Erret L. Effect of aortic cannula characteristics and blood velocity on transcranial doppler-detected microemboli during cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 1998;12:266-269.

    Article  CAS  PubMed  Google Scholar 

  55. Banbury MK, Kouchoukos NT, Allen KB, et al. Emboli capture using the Embol-X intraaortic filter in cardiac surgery: a multicentered randomized trial of 1, 289 patients. Ann Thorac Surg. 2003;76:508-515.

    Article  PubMed  Google Scholar 

  56. Reichenspurner H, Navia JA, Berry G, et al. Particulate emboli capture by an intra-aortic filter device during cardiac surgery. J Thorac Cardiovasc Surg. 2000;119:233-241.

    Article  CAS  PubMed  Google Scholar 

  57. Eifert S, Reichenspurner H, Pfefferkorn T, et al. Neurological and neuropsychological examination and outcome after use of an intra-aortic filter device during cardiac surgery. Perfusion. 2003;18(Suppl):55-60.

    Article  PubMed  Google Scholar 

  58. Borger MA, Taylor RL, Weisel RD, et al. Decreased cerebral emboli during distal aortic arch cannulation: a randomized clinical trial. J Thorac Cardiovasc Surg. 1999;118:740-745.

    Article  CAS  PubMed  Google Scholar 

  59. Willcox TW, Mitchell SJ, Gorman DF. Venous air in the bypass circuit: A source of arterial line emboli exacerbated by vacuum-assisted drainage. Ann Thorac Surg. 1999;68:1285-1289.

    Article  CAS  PubMed  Google Scholar 

  60. Jones TJ, Deal DD, Vernon JC, Blackburn N, Stump DA. Does vacuum-assisted venous drainage increase gaseous microemboli during cardiopulmonary bypass? Ann Thorac Surg. 2002;74:2132-2137.

    Article  PubMed  Google Scholar 

  61. Carrier M, Cyr A, Voisine P, et al. Vacuum-assisted venous drainage does not increase the neurological risk. Heart Surg Forum. 2002;5:285-288.

    PubMed  Google Scholar 

  62. Norman MJ, Sistino JJ, Acsell JR. The effectiveness of low-prime cardiopulmonary bypass circuits at removing gaseous emboli. J Extra Corpor Technol. 2004;36:336-342.

    PubMed  Google Scholar 

  63. Myung RJ, Kirshbom PM, Petko M, et al. Modified ultrafiltration may not improve neurologic outcome following deep hypothermic circulatory arrest. Eur J Cardiothorac Surg. 2003;24:243-248.

    Article  PubMed  Google Scholar 

  64. Stump DA, Rogers AT, Hammon JW, Newman SP. Cerebral emboli and cognitive outcome after cardiac surgery. J Cardiothorac Vasc Anesth. 1996;10:113-118.

    Article  CAS  PubMed  Google Scholar 

  65. Boivie P, Hansson M, Engstrom KG. Embolic material generated by multiple aortic crossclamping: a perfusion model with human cadaveric aorta. J Thorac Cardiovasc Surg. 2003;125:1451-1460.

    Article  PubMed  Google Scholar 

  66. Hammon JW, Stump DA, Butterworth JF, et al. Single crossclamp improves 6-month cognitive outcome in high-risk coronary bypass patients: The effect of reduced aortic manipulation. J Thorac Cardiovasc Surg. 2006;131:114-121.

    Article  PubMed  Google Scholar 

  67. Taylor RL, Borger MA, Weisel RD, Fedorko L, Feindel CM. Cerebral microemboli during cardiopulmonary bypass: increased emboli during perfusionist interventions. Ann Thorac Surg. 1999;68:89-93.

    Article  CAS  PubMed  Google Scholar 

  68. Rodriguez RA, Rubens F, Belway D, Nathan HJ. Residual air in the venous cannula increases cerebral embolization at the onset of cardiopulmonary bypass. Eur J Cardiothorac Surg. 2006;29:175-180.

    Article  PubMed  Google Scholar 

  69. Svenarud P, Persson M, van der Linden J. Effect of CO2 insufflation on the number and behavior of air microemboli in open-heart surgery: a randomized clinical trial. Circulation. 2004;109:1127-1132.

    Article  CAS  PubMed  Google Scholar 

  70. Martens S, Neumann K, Sodemann C, Deschka H, Wimmer-Greinecker G, Moritz A. Carbon dioxide field flooding reduces neurologic impairment after open heart surgery. Ann Thorac Surg. 2008;85:543-547.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Borger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Borger, M.A., Djaiani, G., Baker, R.A. (2011). Cardiopulmonary Bypass Circuit and the Brain. In: Bonser, R., Pagano, D., Haverich, A. (eds) Brain Protection in Cardiac Surgery. Springer, London. https://doi.org/10.1007/978-1-84996-293-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-293-3_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-292-6

  • Online ISBN: 978-1-84996-293-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics