Skip to main content

Experimental Basis and Clinical Studies of Brain Protection in Pediatric Heart Surgery

  • Chapter
  • First Online:
  • 1077 Accesses

Abstract

Over the last 20 years, there has been a steady and consistent reduction in mortality for pediatric cardiac surgery. This improvement has occurred in spite of an increase in complexity of cases undertaken as well as a shift to surgery in infants and neonates. At many major pediatric cardiac surgery centers such as Children’s National Medical Center in Washington DC, approximately 30% of cardiac surgical patients today are neonates, 30% are infants between 1 month and 1 year of age, and the remaining are older. Even conditions such as hypoplastic left heart syndrome can now be palliated in the newborn period applying the Norwood procedure with a mortality as low as 10-15%.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Turley K, Roizen M, Ebert PA. Deep hypothermia and total circulatory arrest: the effect of method of cooling on the ­catecholamine response to arrest. J Surg Res. 1981;30(4):379-383.

    Article  CAS  PubMed  Google Scholar 

  2. Jonas RA, Newburger JW, Volpe JJ (eds) Brain Injury and Pediatric Cardiac Surgery. Butterworth-Heinemann, 1995

    Google Scholar 

  3. Newburger JW, Jonas RA, Wernovsky G, et al. A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low flow cardiopulmonary bypass in infant heart surgery. N Engl J Med. 1993;329:1057-1064.

    Article  CAS  PubMed  Google Scholar 

  4. Goldberg CS, Bove EL, Devaney EJ, et al. A randomized clinical trial of regional cerebral perfusion versus deep ­­hypothermic circulatory arrest: outcomes for infants with functional single ventricle. J Thorac Cardiovasc Surg. 2007; 133(4):880-887.

    Article  PubMed  Google Scholar 

  5. Duebener LF, Hagino I, Schmitt K, et al. Direct visualization of minimal cerebral capillary flow during retrograde cerebral perfusion: an intravital fluorescence microscopy study in pigs. Ann Thorac Surg. 2003;75(4):1288-1293.

    Article  PubMed  Google Scholar 

  6. McQuillen PS, Barkovich AJ, Hamrick SE, et al. Temporal and anatomic risk profile of brain injury with neonatal repair of congenital heart defects. Stroke. 2007;38(2 Suppl):736-741.

    Article  PubMed  Google Scholar 

  7. Rahn H, Reeves RB, Howell BJ. Hydrogen ion regulation, temperature, and evolution. Am Rev Respir Dis. 1975;112(2):165-172.

    CAS  PubMed  Google Scholar 

  8. Wong PC, Barlow CF, Hickey PR, et al. Factors associated with choreoathetosis after cardiopulmonary bypass in children with congenital heart disease. Circulation. 1992;86(II):II–118-126.

    Google Scholar 

  9. Jonas RA, Bellinger DC, Rappaport LA, et al. Relation of pH strategy and developmental outcome after hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 1993;106(2):362-368.

    CAS  PubMed  Google Scholar 

  10. Aoki M, Nomura F, Stromski ME, et al. Effects of pH on brain energetics after hypothermic circulatory arrest. Ann Thorac Surg. 1993;55(5):1093-1103.

    Article  CAS  PubMed  Google Scholar 

  11. Hiramatsu T, Miura T, Forbess JM, et al. pH strategies and cerebral energetics before and after circulatory arrest. J Thorac Cardiovasc Surg. 1995;109(5):948-957.

    Article  CAS  PubMed  Google Scholar 

  12. du Plessis AJ, Jonas RA, Wypij D, et al. Perioperative effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg. 1997;114(6):991-1000.

    Article  PubMed  Google Scholar 

  13. Bellinger DC, Wypij D, du Plessis AJ, et al. Developmental and neurologic effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg. 2001;121(2):374-383.

    Article  CAS  PubMed  Google Scholar 

  14. Cook DJ, Orszulak TA, Daly RC, MacVeigh I. Minimum hematocrit for normothermic cardiopulmonary bypass in dogs. Circulation. 1997;96((9):II–200-4.

    Google Scholar 

  15. Shin’oka T, Shum-Tim D, Jonas RA, et al. Higher hematocrit improves cerebral outcome after deep hypothermic ­circulatory arrest. J Thorac Cardiovasc Surg. 1996;112(6):1610-1620.

    Article  PubMed  Google Scholar 

  16. Shin’oka T, Shum-Tim D, Laussen PC, et al. Effects of oncotic pressure and hematocrit on outcome after hypo­thermic circulatory arrest. Ann Thorac Surg. 1998;65(1):155-164.

    Article  PubMed  Google Scholar 

  17. Visconti KJ, Bichell DP, Jonas RA, Newburger JW, Bellinger DC. Developmental outcome after surgical versus interventional closure of secundum atrial septal defect in children. Circulation. 1999;100(19):II145-50.

    CAS  PubMed  Google Scholar 

  18. Jonas RA, Wypij D, Roth SJ, et al. The influence of hemodilution on outcome after hypothermic cardiopulmonary bypass: results of a randomized trial in infants. J Thorac Cardiovasc Surg. 2003;126(6):1765-1774.

    Article  PubMed  Google Scholar 

  19. Newburger JW, Jonas RA, Soul J, et al. Randomized trial of hematocrit 25% versus 35% during hypothermic cardiopulmonary bypass in infant heart surgery. J Thorac Cardiovasc Surg. 2008;135(2):347-354. 354.

    Article  PubMed  Google Scholar 

  20. Wypij D, Jonas RA, Bellinger DC, et al. The effect of hematocrit during hypothermic cardiopulmonary bypass in infant heart surgery: results from the combined Boston hematocrit trials. J Thorac Cardiovasc Surg. 2008;135(2):355-360.

    Article  PubMed  Google Scholar 

  21. Sakamoto T, Hatsuoka S, Stock UA, et al. Prediction of safe duration of hypothermic circulatory arrest by near-infrared spectroscopy. J Thorac Cardiovasc Surg. 2001;122(2):339-350.

    Article  CAS  PubMed  Google Scholar 

  22. Sakamoto T, Zurakowski D, Duebener LF, et al. Interaction of temperature with hematocrit level and pH determines safe duration of hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 2004;128(2):220-232.

    Article  PubMed  Google Scholar 

  23. Sakamoto T, Zurakowski D, Duebener LF, et al. Combination of alpha-stat strategy and hemodilution exacerbates neurologic injury in a survival piglet model with deep hypothermic circulatory arrest. Ann Thorac Surg. 2002;73(1):180-189.

    Article  PubMed  Google Scholar 

  24. Anttila V, Hagino I, Zurakowski D, et al. Specific bypass conditions determine safe minimum flow rate. Ann Thorac Surg. 2005;80(4):1460-1467.

    Article  PubMed  Google Scholar 

  25. Hagino I, Anttila V, Zurakowski D, Duebener LF, Lidov HG, Jonas RA. Tissue oxygenation index is a useful monitor of histologic and neurologic outcome after cardiopulmonary bypass in piglets. J Thorac Cardiovasc Surg. 2005;130(2):384-392.

    Article  PubMed  Google Scholar 

  26. Anttila V, Christou H, Hagino I, et al. Cerebral endothelial nitric oxide synthase expression is reduced after very-low-flow bypass. Ann Thorac Surg. 2006 Jun;81(6):2202-2206.

    Article  PubMed  Google Scholar 

  27. Nicole O, Docagne F, Ali C, et al. The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat Med. 2001;7(1):59-64.

    Article  CAS  PubMed  Google Scholar 

  28. Mangano DT, Rieves RD, Weiss KD. Judging the safety of aprotinin. N Engl J Med. 2006;355(21):2261-2262.

    Article  CAS  PubMed  Google Scholar 

  29. Sedrakyan A, Treasure T, Elefteriades JA. Effect of aprotinin on clinical outcomes in coronary artery bypass graft surgery: a systematic review and meta-analysis of randomized clinical trials. J Thorac Cardiovasc Surg. 2004;128(3):442-448.

    Article  CAS  PubMed  Google Scholar 

  30. Fergusson DA, Hébert PC, Mazer CD, et al. the BART Investigators. A Comparison of Aprotinin and Lysine Analogues in High-Risk Cardiac Surgery. N Engl J Med. 2008;358:2319-2331.

    Article  CAS  PubMed  Google Scholar 

  31. Aoki M, Jonas RA, Nomura F, et al. Effects of aprotinin on acute recovery of cerebral metabolism in piglets after ­hypothermic circulatory arrest. Ann Thorac Surg. 1994;58(1):146-153.

    Article  CAS  PubMed  Google Scholar 

  32. Lebeurrier N, Liot G, Lopez-Atalaya JP, et al. The brain-specific tissue-type plasminogen activator inhibitor, ­neuroserpin, protects neurons against excitotoxicity both in vitro and in vivo. Mol Cell Neurosci. 2005;30(4):552-558.

    Article  CAS  PubMed  Google Scholar 

  33. Cinelli P, Madani R, Tsuzuki N, et al. Neuroserpin, a neuroprotective factor in focal ischemic stroke. Mol Cell Neurosci. 2001;18:443-457.

    Article  CAS  PubMed  Google Scholar 

  34. Iwata Y, Nicole O, Okamura T, Zurakowski D, Jonas RA. Aprotinin confers neuroprotection by reducing excitotoxic cell death. J Thorac Cardiovasc Surg. 2008;135(3):573-578.

    Article  CAS  PubMed  Google Scholar 

  35. Anttila V, Hagino I, Iwata Y, et al. Aprotinin improves cerebral protection: evidence from a survival porcine model. J Thorac Cardiovasc Surg. 2006;132(4):948-953.

    Article  CAS  PubMed  Google Scholar 

  36. Iwata Y, Okamura T, Ishibashi N, Zurakowski D, Lidov HGW, Jonas RA. Optimal dose of aprotinin for neuroprotection and renal function in a piglet survival model. J Thorac Cardiovasc Surg, submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Jonas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Jonas, R.A. (2011). Experimental Basis and Clinical Studies of Brain Protection in Pediatric Heart Surgery. In: Bonser, R., Pagano, D., Haverich, A. (eds) Brain Protection in Cardiac Surgery. Springer, London. https://doi.org/10.1007/978-1-84996-293-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-293-3_17

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-292-6

  • Online ISBN: 978-1-84996-293-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics