Skip to main content

Temperature and Brain Protection in Cardiac Surgery

  • Chapter
  • First Online:
Brain Protection in Cardiac Surgery

Abstract

It is well known and has been clearly demonstrated that temperature plays a significant role in cerebral physiology and physiopathology, particularly in the setting of cardiac surgery with cardiopulmonary bypass (CPB). The human central nervous system (CNS) receives about 15% of the resting cardiac output and consumes about 20% of the oxygen required by the body at rest. The brain, which accounts for 2% of the total body weight, has an oxygen consumption of about 3.5 mL−1·100 g−1·min−1. This high metabolic rate mandates a high blood flow; therefore, cerebral blood flow (CBF) (Fig. 13.1) is of paramount importance and is normally under metabolic, neural, myogenic, and chemical control.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cottrell JE, Smith DS. Anesthesia and Neurosurgery. 4th ed. St. Louis: Mosby; 2001.

    Google Scholar 

  2. Michenfelder JD, Milde JH. The relationship among canine brain temperature, metabolism, and function during hypothermia. Anesthesiology. 1991;75:130-136.

    Article  CAS  PubMed  Google Scholar 

  3. Klementavicius R, Nemoto EM, Yonas H. The Q10 ratio for basal cerebral metabolic rate for oxygen in rats. J Neurosurg. 1996;85:482-487.

    Article  CAS  PubMed  Google Scholar 

  4. Hoffman WE, Albrecht RF, Miletich DJ. Regional cerebral blood flow changes during hypothermia. Cryobiology. 1982;19:640-645.

    Article  CAS  PubMed  Google Scholar 

  5. Govier AV, Reves JG, McKay RD, et al. Factors and their influence on regional cerebral blood flow during nonpulsatile cardiopulmonary bypass. Ann Thorac Surg. 1984;38:592-600.

    Article  CAS  PubMed  Google Scholar 

  6. Schwartz AE, Sandhu AA, Kaplon RJ, et al. Cerebral blood flow is determined by arterial pressure and not cardiopulmonary bypass flow rate. Ann Thorac Surg. 1995;60:165-169.

    CAS  PubMed  Google Scholar 

  7. Woodcock TE, Murkin JM, Farrar JK, Tweed WA, Guiraudon GM, McKenzie FN. Pharmacologic EEG suppression during cardiopulmonary bypass: cerebral hemodynamic and metabolic effects of thiopental or isoflurane during hypothermia and normothermia. Anesthesiology. 1987;67:218-224.

    Article  CAS  PubMed  Google Scholar 

  8. Dreyer WJ, Phillips SC, Lindsey ML, et al. Interleukin 6 induction in the canine myocardium after cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2000;120:256-263.

    Article  CAS  PubMed  Google Scholar 

  9. Qing M, Vazquez-Jimenez JF, Klosterhalfen B, et al. Influence of temperature during cardiopulmonary bypass on leukocyte activation, cytokine balance, and post-operative organ damage. Shock. 2001;15:372-377.

    Article  CAS  PubMed  Google Scholar 

  10. Vazquez-Jimenez JF, Qing M, Hermanns B, et al. Moderate hypothermia during cardiopulmonary bypass reduces myocardial cell damage and myocardial cell death related to cardiac surgery. J Am Coll Cardiol. 2001;38:1216-1223.

    Article  CAS  PubMed  Google Scholar 

  11. Frangogiannis NG, Mendoza LH, Lindsey ML, et al. IL-10 is induced in the reperfused myocardium and may modulate the reaction to injury. J Immunol. 2000;165:2798-2808.

    CAS  PubMed  Google Scholar 

  12. Meldrum DR, Meng X, Dinarello CA, et al. Human myocardial tissue TNFalpha expression following acute global ischemia in vivo. J Mol Cell Cardiol. 1998;30:1683-1689.

    Article  CAS  PubMed  Google Scholar 

  13. Selnes OA, Goldsborough MA, Borowicz LM, McKhann GM. Neurobehavioural sequelae of cardiopulmonary bypass. Lancet. 1999;353:1601-1616.

    Article  CAS  PubMed  Google Scholar 

  14. Newman MF, Mathew JP, Grocott HP, et al. Central nervous system injury associated with cardiac surgery. Lancet. 2006;368:694-703.

    Article  PubMed  Google Scholar 

  15. Newman MF, Kirchner JL, Phillips-Bute B, et al. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001;344:395-402.

    Article  CAS  PubMed  Google Scholar 

  16. Silbert BS, Scott DA, Evered LA, et al. A comparison of the effect of high- and low-dose fentanyl on the incidence of postoperative cognitive dysfunction after coronary artery bypass surgery in the elderly. Anesthesiology. 2006;104:1137-1145.

    Article  CAS  PubMed  Google Scholar 

  17. Jensen BO, Hughes P, Rasmussen LS, Pedersen PU, Steinbruchel DA. Cognitive outcomes in elderly high-risk patients after off-pump versus conventional coronary artery bypass grafting: a randomized trial. Circulation. 2006;113:2790-2795.

    Article  PubMed  Google Scholar 

  18. Boodhwani M, Rubens F, Wozny D, Rodriguez R, Nathan HJ. Effects of sustained mild hypothermia on neurocognitive function after coronary artery bypass surgery: a randomized, double-blind study. J Thorac Cardiovasc Surg. 2007;134:1443-1450.

    Article  PubMed  Google Scholar 

  19. Djaiani G, Fedorko L, Borger MA, et al. Continuous-flow cell saver reduces cognitive decline in elderly patients after coronary bypass surgery. Circulation. 2007;116:1888-1895.

    Article  PubMed  Google Scholar 

  20. Rubens FD, Boodhwani M, Mesana T, Wozny D, Wells G, Nathan HJ. The cardiotomy trial: a randomized, double-blind study to assess the effect of processing of shed blood during cardiopulmonary bypass on transfusion and neurocognitive function. Circulation. 2007;116:I89-I97.

    Article  PubMed  Google Scholar 

  21. Selnes OA, Royall RM, Grega MA, Borowicz LM Jr, Quaskey S, McKhann GM. Cognitive changes 5 years after coronary artery bypass grafting: is there evidence of late decline? Arch Neurol. 2001;58:598-604.

    Article  CAS  PubMed  Google Scholar 

  22. Nathan HJ, Rodriguez R, Wozny D, et al. Neuroprotective effect of mild hypothermia in patients undergoing coronary artery surgery with cardiopulmonary bypass: five-year follow-up of a randomized trial. J Thorac Cardiovasc Surg. 2007;133:1206-1211.

    Article  PubMed  Google Scholar 

  23. Bokesch PM, Izykenova GA, Justice JB, Easley KA, Dambinova SA. NMDA receptor antibodies predict adverse neurological outcome after cardiac surgery in high-risk patients. Stroke. 2006;37:1432-1436.

    Article  CAS  PubMed  Google Scholar 

  24. Bucerius J, Gummert JF, Borger MA, et al. Predictors of delirium after cardiac surgery delirium: effect of beating-heart (off-pump) surgery. J Thorac Cardiovasc Surg. 2004;127:57-64.

    Article  PubMed  Google Scholar 

  25. Djaiani G, Fedorko L, Borger M, et al. Mild to moderate atheromatous disease of the thoracic aorta and new ischemic brain lesions after conventional coronary artery bypass graft surgery. Stroke. 2004;35:e356-e358.

    Article  PubMed  Google Scholar 

  26. McKhann GM, Grega MA, Borowicz LM, et al. Encephalopathy and stroke after coronary artery bypass grafting. Arch Neurol. 2002;59:1422-1428.

    Article  PubMed  Google Scholar 

  27. Borger MA, Ivanov J, Weisel RD, Rao V, Peniston CM. Stroke during coronary bypass surgery: principal role of cerebral macroemboli. Eur J Cardiothorac Surg. 2001;19:627-632.

    Article  CAS  PubMed  Google Scholar 

  28. Nussmeier NA. A review of risk factors for adverse neurologic outcome after cardiac surgery. J Extra Corpor Technol. 2002;34:4-10.

    PubMed  Google Scholar 

  29. Bucerius J, Gummert JF, Borger MA, et al. Stroke after cardiac surgery: a risk factor analysis of 16, 184 consecutive adult patients. Ann Thorac Surg. 2003;75:472-478.

    Article  PubMed  Google Scholar 

  30. Karkouti K, Djaiani G, Borger M, et al. Low hematocrit during cardiopulmonary bypass is associated with increased risk of perioperative stroke in cardiac surgery. Ann Thorac Surg. 2005;80:1381-1387.

    Article  PubMed  Google Scholar 

  31. McKhann GM, Grega MA, Borowicz LM Jr, Baumgartner WA, Selnes OA. Stroke and encephalopathy after cardiac surgery: an update. Stroke. 2006;37:562-571.

    Article  PubMed  Google Scholar 

  32. Selim M. Perioperative stroke. N Engl J Med. 2007;356:706-713.

    Article  CAS  PubMed  Google Scholar 

  33. Choudhary SK, Bhan A, Sharma R, et al. Aortic atherosclerosis and perioperative stroke in patients undergoing coronary artery bypass: role of intra-operative transesophageal echocardiography. Int J Cardiol. 1997;61:31-38.

    Article  CAS  PubMed  Google Scholar 

  34. Newman MF, Wolman R, Kanchuger M, et al. Multicenter preoperative stroke risk index for patients undergoing coronary artery bypass graft surgery. Circulation. 1996;94(Suppl II):II-74-II-80.

    CAS  Google Scholar 

  35. Roach GW, Kanchuger M, Mangano CM, et al. Adverse cerebral outcomes after coronary bypass surgery. Multicenter Study of Perioperative Ischemia Research Group and the Ischemia Research and Education Foundation Investigators. New Engl J Med. 1996;335:1857-1863.

    Article  CAS  PubMed  Google Scholar 

  36. McKhann GM, Goldsborough MA, Borowicz LM Jr, et al. Predictors of stroke risk in coronary artery bypass patients. Ann Thorac Surg. 1997;63:516-521.

    Article  CAS  PubMed  Google Scholar 

  37. Borger MA, Ivanov J, Weisel RD, et al. Decreasing incidence of stroke during valvular surgery. Circulation. 1998;98:II137-II143.

    CAS  PubMed  Google Scholar 

  38. Hogue CW Jr, Murphy SF, Schechtman KB, Davila-Roman VG. Risk factors for early or delayed stroke after cardiac surgery. Circulation. 1999;100:642-647.

    PubMed  Google Scholar 

  39. Puskas F, Grocott HP, White WD, Mathew JP, Newman MF, Bar-Yosef S. Intraoperative hyperglycemia and cognitive decline after CABG. Ann Thorac Surg. 2007;84:1467-1473.

    Article  PubMed  Google Scholar 

  40. Goto T, Baba T, Honma K, et al. Magnetic resonance imaging findings and postoperative neurologic dysfunction in elderly patients undergoing coronary artery bypass grafting. Ann Thorac Surg. 2001;72:137-142.

    Article  CAS  PubMed  Google Scholar 

  41. Davila-Roman VG, Barzilai B, Wareing TH, Murphy SF, Schechtman KB, Kouchoukos NT. Atherosclerosis of the ascending aorta: prevalence and role as an independent predictor of cerebrovascular events in cardiac patients. Stroke. 1994;25:2010-2016.

    CAS  PubMed  Google Scholar 

  42. van der Linden J, Hadjinikolaou L, Bergman P, Lindblom D. Postoperative stroke in cardiac surgery is related to the location and extent of atherosclerotic disease in the ascending aorta. J Am Coll Cardiol. 2001;38:131-135.

    Article  PubMed  Google Scholar 

  43. Djaiani G. Aortic arch atheroma: stroke reduction in cardiac surgical patients. Semin Cardiothorac Vasc Anesth. 2006;10:143-157.

    Article  PubMed  Google Scholar 

  44. Bainbridge D. Aortic assessment for cardiac surgical procedures. Semin Cardiothorac Vasc Anesth. 2006;10:158-161.

    Article  PubMed  Google Scholar 

  45. Hogue CW Jr, Selnes OL, McKhann GM. Should all patients undergoing cardiac surgery have preoperative psychometric testing: a brain stress test? Anesth Analg. 2007;104:1012-1014.

    Article  PubMed  Google Scholar 

  46. Filsoufi F, Rahmanian PB, Castillo JG, Bronster D, Adams DH. Incidence, topography, predictors and long-term survival after stroke in patients undergoing coronary artery bypass grafting. Ann Thorac Surg. 2008;85:862-871.

    Article  PubMed  Google Scholar 

  47. Grocott HP, White WD, Morris RW, et al. Genetic polymorphisms and the risk of stroke after cardiac surgery. Stroke. 2005;36:1854-1858.

    Article  CAS  PubMed  Google Scholar 

  48. Mathew JP, Podgoreanu MV, Grocott HP, et al. Genetic variants in P-selectin and C-reactive protein influence susceptibility to cognitive decline after cardiac surgery. J Am Coll Cardiol. 2007;49:1934-1942.

    Article  CAS  PubMed  Google Scholar 

  49. Ozatik MA, Gol MK, Fansa I, et al. Risk factors for stroke following coronary artery bypass operations. J Card Surg. 2005;20:52-57.

    Article  PubMed  Google Scholar 

  50. Hammon JW, Stump DA, Butterworth JF, et al. Single crossclamp improves 6-month cognitive outcome in high-risk coronary bypass patients: the effect of reduced aortic manipulation. J Thorac Cardiovasc Surg. 2006;131:114-121.

    Article  PubMed  Google Scholar 

  51. Zingone B, Rauber E, Gatti G, et al. The impact of epiaortic ultrasonographic scanning on the risk of perioperative stroke. Eur J Cardiothorac Surg. 2006;29:720-728.

    Article  PubMed  Google Scholar 

  52. Boodhwani M, Rubens FD, Wozny D, et al. Predictors of early neurocognitive deficits in low-risk patients undergoing on-pump coronary artery bypass surgery. Circulation. 2006;114:I461-I466.

    Article  PubMed  Google Scholar 

  53. Grigore AM, Grocott HP, Mathew JP, et al. The rewarming rate and increased peak temperature alter neurocognitive outcome after cardiac surgery. Anesth Analg. 2002;94:4-10.

    Article  PubMed  Google Scholar 

  54. Grigore AM, Mathew J, Grocott HP, et al. Prospective randomized trial of normothermic versus hypothermic cardiopulmonary bypass on cognitive function after coronary artery bypass graft surgery. Anesthesiology. 2001;95:1110-1119.

    Article  CAS  PubMed  Google Scholar 

  55. Nathan HJ, Wells GA, Munson JL, Wozny D. Neuroprotective effect of mild hypothermia in patients undergoing coronary artery surgery with cardiopulmonary bypass: a randomized trial. Circulation. 2001;104:I85-I91.

    Article  CAS  PubMed  Google Scholar 

  56. Libman RB, Wirkowski E, Neystat M, Barr W, Gelb S, Graver M. Stroke associated with cardiac surgery: determinants, timing, and stroke subtypes. Arch Neurol. 1997;54:83-87.

    CAS  PubMed  Google Scholar 

  57. Likosky DS, Leavitt BJ, Marrin CA, et al. Intra- and postoperative predictors of stroke after coronary artery bypass grafting. Ann Thorac Surg. 2003;76:428-434.

    Article  PubMed  Google Scholar 

  58. Likosky DS, Marrin CA, Caplan LR, et al. Determination of etiologic mechanisms of strokes secondary to coronary artery bypass graft surgery. Stroke. 2003;34:2830-2834.

    Article  PubMed  Google Scholar 

  59. Boivie P, Edstrom C, Engstrom KG. Side differences in cerebrovascular accidents after cardiac surgery: a statistical analysis of neurologic symptoms and possible implications for anatomic mechanisms of aortic particle embolization. J Thorac Cardiovasc Surg. 2005;129:591-598.

    Article  PubMed  Google Scholar 

  60. Ritzl A, Meisel S, Wittsack HJ, et al. Development of brain infarct volume as assessed by magnetic resonance imaging (MRI): follow-up of diffusion-weighted MRI lesions. J Magn Reson Imaging. 2004;20:201-207.

    Article  PubMed  Google Scholar 

  61. Paparella D, Galeone A, Venneri MT, et al. Activation of the coagulation system during coronary artery bypass grafting: comparison between on-pump and off-pump techniques. J Thorac Cardiovasc Surg. 2006;131:290-297.

    Article  PubMed  Google Scholar 

  62. Frank SM, Fleisher LA, Breslow MJ, et al. Perioperative maintenance of normothermia reduces the incidence of morbid cardiac events: a randomized clinical trial. Jama. 1997;277:1127-1134.

    Article  CAS  PubMed  Google Scholar 

  63. Martin TD, Craver JM, Gott JP, et al. Prospective, randomized trial of retrograde warm blood cardioplegia: myocardial benefit and neurologic threat. Ann Thorac Surg. 1994;57:298-302.

    Article  CAS  PubMed  Google Scholar 

  64. The Warm Heart Trials Group. Normothermic vs hypothermic blood cardioplegia for coronary bypass surgery: a randomized trial in 1732 patients. Lancet. 1994;343:559-563.

    Article  Google Scholar 

  65. Ali MS, Harmer M, Vaughan RS, et al. Changes in cerebral oxygenation during cold (28 degrees C) and warm (34 degrees C) cardiopulmonary bypass using different blood gas strategies (alpha-stat and pH-stat) in patients undergoing coronary artery bypass graft surgery. Acta Anaesthesiol Scand. 2004;48:837-844.

    Article  PubMed  Google Scholar 

  66. Mora CT, Henson MB, Weintraub WS, et al. The effect of temperature management during cardiopulmonary bypass on neurologic and neuropsychologic outcomes in patients undergoing coronary revascularization. J Thorac Cardiovasc Surg. 1996;112:514-522.

    Article  CAS  PubMed  Google Scholar 

  67. Ginsberg MD, Busto R. Combating hyperthermia in acute stroke: a significant clinical concern. Stroke. 1998;29:529-534.

    CAS  PubMed  Google Scholar 

  68. Polderman KH. Keeping a cool head: how to induce and maintain hypothermia. Crit Care Med. 2004;32:2558-2560.

    Article  PubMed  Google Scholar 

  69. Polderman KH. Application of therapeutic hypothermia in the ICU: opportunities and pitfalls of a promising treatment modality. Part I: Indications and evidence. Intensive Care Med. 2004;30:556.

    Article  PubMed  Google Scholar 

  70. Azzimondi G, Bassein L, Nonino F, et al. Fever in acute stroke worsens prognosis. A prospective study. Stroke. 1995;26:2040-2043.

    CAS  PubMed  Google Scholar 

  71. Wang Y, Lim LL, Levi C, Heller RF, Fisher J. Influence of admission body temperature on stroke mortality. Stroke. 2000;31:404-409.

    CAS  PubMed  Google Scholar 

  72. Reith J, Jorgensen HS, Pedersen PM, et al. Body temperature in acute stroke: relation to stroke severity, infarct size, mortality, and outcome. Lancet. 1996;347:422-425.

    Article  CAS  PubMed  Google Scholar 

  73. Kammersgaard LP, Jorgensen HS, Rungby JA, et al. Admission body temperature predicts long-term mortality after acute stroke: the Copenhagen Stroke Study. Stroke. 2002;33:1759-1762.

    Article  CAS  PubMed  Google Scholar 

  74. Kasner SE, Wein T, Piriyawat P, et al. Acetaminophen for altering body temperature in acute stroke: a randomized clinical trial. Stroke. 2002;33:130-134.

    Article  CAS  PubMed  Google Scholar 

  75. Mayer SA, Kowalski RG, Presciutti M, et al. Clinical trial of a novel surface cooling system for fever control in neurocritical care patients. Crit Care Med. 2004;32:2508-2515.

    Article  PubMed  Google Scholar 

  76. Shann KG, Likosky DS, Murkin JM, et al. An evidence-based review of the practice of cardiopulmonary bypass in adults: a focus on neurologic injury, glycemic control, hemodilution, and the inflammatory response. J Thorac Cardiovasc Surg. 2006;132:283-290.

    Article  PubMed  Google Scholar 

  77. Hogue CW Jr, Palin CA, Arrowsmith JE. Cardiopulmonary bypass management and neurologic outcomes: an evidence-based appraisal of current practices. Anesth Analg. 2006;103:21-37.

    Article  PubMed  Google Scholar 

  78. Prakash O, Jonson B, Bos E, Meij S, Hugenholtz PG, Hekman W. Cardiorespiratory and metabolic effects of profound hypothermia. Crit Care Med. 1978;6:340-346.

    Article  CAS  PubMed  Google Scholar 

  79. Berger C, Schabitz WR, Georgiadis D, Steiner T, Aschoff A, Schwab S. Effects of hypothermia on excitatory amino acids and metabolism in stroke patients: a microdialysis study. Stroke. 2002;33:519-524.

    Article  CAS  PubMed  Google Scholar 

  80. Berger C, Schabitz WR, Wolf M, Mueller H, Sommer C, Schwab S. Hypothermia and brain-derived neurotrophic factor reduce glutamate synergistically in acute stroke. Exp Neurol. 2004;185:305-312.

    Article  CAS  PubMed  Google Scholar 

  81. Fischer S, Renz D, Wiesnet M, Schaper W, Karliczek GF. Hypothermia abolishes hypoxia-induced hyperpermeability in brain microvessel endothelial cells. Brain Res Mol Brain Res. 1999;74:135-144.

    Article  CAS  PubMed  Google Scholar 

  82. Huet O, Kinirons B, Dupic L, et al. Induced mild hypothermia reduces mortality during acute inflammation in rats. Acta Anaesthesiol Scand. 2007;51:1211-1216.

    Article  CAS  PubMed  Google Scholar 

  83. Kimura A, Sakurada S, Ohkuni H, Todome Y, Kurata K. Moderate hypothermia delays proinflammatory cytokine production of human peripheral blood mononuclear cells. Crit Care Med. 2002;30:1499-1502.

    Article  CAS  PubMed  Google Scholar 

  84. Xu L, Yenari MA, Steinberg GK, Giffard RG. Mild hypothermia reduces apoptosis of mouse neurons in vitro early in the cascade. J Cereb Blood Flow Metab. 2002;22:21-28.

    Article  PubMed  Google Scholar 

  85. Zhao H, Wang JQ, Shimohata T, et al. Conditions of protection by hypothermia and effects on apoptotic pathways in a rat model of permanent middle cerebral artery occlusion. J Neurosurg. 2007;107:636-641.

    Article  CAS  PubMed  Google Scholar 

  86. Kovesdi E, Czeiter E, Tamas A, et al. Rescuing neurons and glia: is inhibition of apoptosis useful? Prog Brain Res. 2007;161:81-95.

    Article  CAS  PubMed  Google Scholar 

  87. Bernard SA, Gray TW, Buist MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557-563.

    Article  PubMed  Google Scholar 

  88. Hypothermia After Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346:549-556.

    Article  Google Scholar 

  89. Bernard SA, Buist MD. Induced hypothermia in critical care medicine: a review. Crit Care Med. 2003;31:2041-2051.

    Article  PubMed  Google Scholar 

  90. Marion DW. Controlled normothermia in neurologic intensive care. Crit Care Med. 2004;32:S43-S45.

    Article  PubMed  Google Scholar 

  91. Polderman KH. Application of therapeutic hypothermia in the intensive care unit: opportunities and pitfalls of a promising treatment modality. Part 2: Practical aspects and side effects. Intensive Care Med. 2004;30:757-769.

    Article  PubMed  Google Scholar 

  92. Polderman KH, Ely EW, Badr AE, Girbes AR. Induced hypothermia in traumatic brain injury: considering the conflicting results of meta-analyses and moving forward. Intensive Care Med. 2004;30:1860-1864.

    Article  PubMed  Google Scholar 

  93. Crowder CM, Tempelhoff R, Theard MA, Cheng MA, Todorov A, Dacey RG Jr. Jugular bulb temperature: comparison with brain surface and core temperatures in neurosurgical patients during mild hypothermia. J Neurosurg. 1996;85:98-103.

    Article  CAS  PubMed  Google Scholar 

  94. Nussmeier NA, Cheng W, Marino M, et al. Temperature during cardiopulmonary bypass: the discrepancies between monitored sites. Anesth Analg. 2006;103:1373-1379.

    Article  PubMed  Google Scholar 

  95. Nathan HJ, Lavallee G. The management of temperature during hypothermic cardiopulmonary bypass: I. Canadian survey. Can J Anaesth. 1995;42:669-671.

    Article  CAS  PubMed  Google Scholar 

  96. Grocott HP, Mackensen GB, Grigore AM, et al. Postoperative hyperthermia is associated with cognitive dysfunction after coronary artery bypass graft surgery. Stroke. 2002;33:537-541.

    Article  PubMed  Google Scholar 

  97. Safar P. Mild hypothermia in resuscitation: a historical ­perspective. Ann Emerg Med. 2003;41:887-888. author reply 8.

    Article  PubMed  Google Scholar 

  98. Safar PJ, Kochanek PM. Therapeutic hypothermia after cardiac arrest. N Engl J Med. 2002;346:612-613.

    Article  PubMed  Google Scholar 

  99. Wagner KR, Zuccarello M. Local brain hypothermia for neuroprotection in stroke treatment and aneurysm repair. Neurol Res. 2005;27:238-245.

    Article  PubMed  Google Scholar 

  100. Bigelow WG, Lindsay WK, Greenwood WF. Hypothermia; its possible role in cardiac surgery: an investigation of factors governing survival in dogs at low body temperatures. Ann Surg. 1950;132:849-866.

    Article  CAS  PubMed  Google Scholar 

  101. Bigelow WG, Callaghan JC, Hopps JA. General hypothermia for experimental intracardiac surgery; the use of electrophrenic respirations, an artificial pacemaker for cardiac standstill and radio-frequency rewarming in general hypothermia. Ann Surg. 1950;132:531-539.

    Article  CAS  PubMed  Google Scholar 

  102. Bigelow WG, Callaghan JC, Hopps JA. General hypothermia for experimental intracardiac surgery; the use of electrophrenic respirations, an artificial pacemaker for cardiac standstill, and radio-frequency rewarming in general hypothermia. Trans Meet Am Surg Assoc. 1950;68:211-219.

    CAS  Google Scholar 

  103. Simpson RE, Walter GA, Phillis JW. The effects of hypothermia on amino acid neurotransmitter release from the cerebral cortex. Neurosci Lett. 1991;124:83-86.

    Article  CAS  PubMed  Google Scholar 

  104. Sano T, Drummond JC, Patel PM, Grafe MR, Watson JC, Cole DJ. A comparison of the cerebral protective effects of isoflurane and mild hypothermia in a model of incomplete forebrain ischemia in the rat. Anesthesiology. 1992;76:221-228.

    Article  CAS  PubMed  Google Scholar 

  105. Griepp RB, Ergin MA, McCullough JN, et al. Use of hypothermic circulatory arrest for cerebral protection during aortic surgery. J Card Surg. 1997;12:312-321.

    Article  CAS  PubMed  Google Scholar 

  106. McCullough JN, Zhang N, Reich DL, et al. Cerebral metabolic suppression during hypothermic circulatory arrest in humans. Ann Thorac Surg. 1999;67:1895-1899. discussion 919-21.

    Article  CAS  PubMed  Google Scholar 

  107. Kawahara F, Kadoi Y, Saito S, Goto F, Fujita N. Slow rewarming improves jugular venous oxygen saturation during rewarming. Acta Anaesthesiol Scand. 2003;47:419-424.

    Article  CAS  PubMed  Google Scholar 

  108. Alzaga AG, Cerdan M, Varon J. Therapeutic hypothermia. Resuscitation. 2006;70:369-380.

    Article  PubMed  Google Scholar 

  109. Bigelow WG, McBirnie JE. Further experiences with hypothermia for intracardiac surgery in monkeys and groundhogs. Ann Surg. 1953;137:361-365.

    Article  CAS  PubMed  Google Scholar 

  110. Benson DW, Williams GR Jr, Spencer FC, Yates AJ. The use of hypothermia after cardiac arrest. Anesth Analg. 1959;38:423-428.

    Article  CAS  PubMed  Google Scholar 

  111. Nolan JP, Morley PT, Hoek TL, Hickey RW. Therapeutic hypothermia after cardiac arrest. An advisory statement by the Advancement Life support Task Force of the International Liaison committee on Resuscitation. Resuscitation. 2003;57:231-235.

    Article  PubMed  Google Scholar 

  112. Nathan HJ, Parlea L, Dupuis JY, et al. Safety of deliberate intraoperative and postoperative hypothermia for patients undergoing coronary artery surgery: a randomized trial. J Thorac Cardiovasc Surg. 2004;127:1270-1275.

    Article  PubMed  Google Scholar 

  113. Thong WY, Strickler AG, Li S, et al. Hyperthermia in the forty-eight hours after cardiopulmonary bypass. Anesth Analg. 2002;95:1489-1495.

    Article  PubMed  Google Scholar 

  114. Bar-Yosef S, Mathew JP, Newman MF, Landolfo KP, Grocott HP. Prevention of cerebral hyperthermia during cardiac surgery by limiting on-bypass rewarming in combination with post-bypass body surface warming: a feasibility study. Anesth Analg. 2004;99:641-646.

    Article  PubMed  Google Scholar 

  115. Fukuda I, Imazuru T, Osaka M, Watanabe K, Meguro K, Wada M. Thrombolytic therapy for delayed, in-hospital stroke after cardiac surgery. Ann Thorac Surg. 2003;76:1293-1295.

    Article  PubMed  Google Scholar 

  116. Moazami N, Smedira NG, McCarthy PM, et al. Safety and efficacy of intraarterial thrombolysis for perioperative stroke after cardiac operation. Ann Thorac Surg. 2001;72:1933-1937.

    Article  CAS  PubMed  Google Scholar 

  117. Berger C, Schramm P, Schwab S. Reduction of diffusion-weighted MRI lesion volume after early moderate hypothermia in ischemic stroke. Stroke. 2005;36:e56-e58.

    Article  PubMed  Google Scholar 

  118. Sterz F, Holzer M, Roine R, et al. Hypothermia after cardiac arrest: a treatment that works. Curr Opin Crit Care. 2003;9:205-210.

    Article  PubMed  Google Scholar 

  119. Heyer EJ, Adams DC, Delphin E, et al. Cerebral dysfunction after coronary artery bypass grafting done with mild or moderate hypothermia. J Thorac Cardiovasc Surg. 1997;114:270-277.

    Article  CAS  PubMed  Google Scholar 

  120. Mclean RF, Wong BI, Naylor CD, et al. Cardiopulmonary bypass, temperature, and central nervous system dysfunction. Circulation. 1994;90:250-255.

    Google Scholar 

  121. Birdi I, Regragui I, Izzat MB, Bryan AJ, Angelini GD. Influence of normothermic systemic perfusion during coronary artery bypass operations: a randomized prospective study. J Thorac Cardiovasc Surg. 1997;114:475-481.

    Article  CAS  PubMed  Google Scholar 

  122. Engelman RM, Pleet AB, Rousou JA, et al. What is the best perfusion temperature for coronary revascularization? J Thorac Cardiovasc Surg. 1996;112:1622-1632. discussion 32-3.

    Article  CAS  PubMed  Google Scholar 

  123. Engelman RM, Pleet AB, Rousou JA, et al. Does cardiopulmonary bypass temperature correlate with postoperative central nervous system dysfunction? J Card Surg. 1995;10:493-497.

    Article  CAS  PubMed  Google Scholar 

  124. Engelman RM, Pleet AB, Rousou JA, et al. Influence of cardiopulmonary bypass perfusion temperature on neurologic and hematologic function after coronary artery bypass grafting. Ann Thorac Surg. 1999;67:1547-1555. discussion 56.

    Article  CAS  PubMed  Google Scholar 

  125. Rees K, Beranek-Stanley M, Burke M, Ebrahim S. Hypothermia to reduce neurological damage following coronary artery bypass surgery. Cochrane Database Syst Rev. 2001:CD002138.

    Google Scholar 

  126. Plourde G, Leduc AS, Morin JE, et al. Temperature during cardiopulmonary bypass for coronary artery operations does not influence postoperative cognitive function: a prospective, randomized trial. J Thorac Cardiovasc Surg. 1997;114:123-128.

    Article  CAS  PubMed  Google Scholar 

  127. Regragui I, Birdi I, Izzat MB, et al. The effects of cardiopulmonary bypass temperature on neuropsychologic outcome after coronary artery operations: a prospective randomized trial. J Thorac Cardiovasc Surg. 1996;112:1036-1045.

    Article  CAS  PubMed  Google Scholar 

  128. Newman MF, Kramer D, Croughwell ND, et al. Differential age effects of mean arterial pressure and rewarming on cognitive dysfunction after cardiac surgery. Anesth Analg. 1995;81:236-242.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank Mrs. Catherine Friederich Murray and Mr. Steve Palmer for their help with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Djaiani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Djaiani, G., Ramakrishna, H., Grigore, A.M. (2011). Temperature and Brain Protection in Cardiac Surgery. In: Bonser, R., Pagano, D., Haverich, A. (eds) Brain Protection in Cardiac Surgery. Springer, London. https://doi.org/10.1007/978-1-84996-293-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-293-3_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-292-6

  • Online ISBN: 978-1-84996-293-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics