Skip to main content

The Design and Methodology of Clinical Studies of Neuroprotection in Cardiac Surgery

  • Chapter
  • First Online:
Brain Protection in Cardiac Surgery

Abstract

Despite years of intensive investigation and research, cerebral injury following cardiac surgery remains a major cause of postoperative morbidity and has been associated with as much as a 10% increase in hospital mortality, increased length of stay, and expensive rehabilitation.1 The clinical manifestations of neurological impairment include almost all the possible deficits and modalities of dysfunction depending on the nature and localization (single or multiple) of the injury,2 with the spectrum of deficits ranging from subtle changes in cognitive function to overt stroke.3 The cognitive deficits after cardiac surgery are similar to those occurring with aging: attention, concentration, memory, and speed of response are the most affected areas.4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roach GW, Kanchuger M, Mangano CM, et al. Adverse cerebral outcomes after coronary bypass surgery. Multicenter Study of Perioperative Ischemia Research Group and the Ischemia Research and Education Foundation Investigators N Engl J Med. 1996;335(25):1857.

    CAS  Google Scholar 

  2. Opie JC. Cardiac surgery and acute neurological injury. In: Willner A, ed. Cerebral Damage Before and After Cardiac Surgery. Dordrecht: Kluwer; 1993. 15.

    Google Scholar 

  3. Harrison MJ. Neurologic complications of coronary artery bypass grafting: diffuse or focal ischemia? Ann Thorac Surg. 1995;59(5):1356.

    Article  CAS  PubMed  Google Scholar 

  4. Deslauriers R, Saunders JK, McIntyre MC. Magnetic resonance studies of the effects of cardiovascular surgery on brain metabolism and function. J Cardiothorac Vasc Anesth. 1996;10(1):127.

    Article  CAS  PubMed  Google Scholar 

  5. Dacey LJ, Likosky DS, Leavitt BJ, et al. Perioperative stroke and long-term survival after coronary bypass graft surgery. Ann Thorac Surg. 2005;79(2):532.

    Article  PubMed  Google Scholar 

  6. Hogue CW Jr, Murphy SF, Schechtman KB, Davila-Roman VG. Risk factors for early or delayed stroke after cardiac surgery. Circulation. 1999;100(6):642.

    PubMed  Google Scholar 

  7. McKhann GM, Grega MA, Borowicz LM Jr, et al. Encephalopathy and stroke after coronary artery bypass grafting: incidence, consequences, and prediction. Arch Neurol. 2002;59(9):1422.

    Article  PubMed  Google Scholar 

  8. Arrowsmith JE, Grocott HP, Reves JG, Newman MF. Central nervous system complications of cardiac surgery. Br J Anaesth. 2000;84(3):378.

    CAS  PubMed  Google Scholar 

  9. Arrowsmith JE, Harrison MJ, Newman SP, Stygall J, Timberlake N, Pugsley WB. Neuroprotection of the brain during cardiopulmonary bypass: a randomized trial of remacemide during coronary artery bypass in 171 patients. Stroke. 1998;29(11):2357.

    CAS  PubMed  Google Scholar 

  10. Pugsley W, Klinger L, Paschalis C, Treasure T, Harrison M, Newman S. The impact of microemboli during cardiopulmonary bypass on neuropsychological functioning. Stroke. 1994;25(7):1393.

    CAS  PubMed  Google Scholar 

  11. Busto R, Dietrich WD, Globus MY, Ginsberg MD. The importance of brain temperature in cerebral ischemic injury. Stroke. 1989;20(8):1113.

    CAS  PubMed  Google Scholar 

  12. Busto R, Globus MY, Dietrich WD, Martinez E, Valdes I, Ginsberg MD. Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. Stroke. 1989;20(7):904.

    CAS  PubMed  Google Scholar 

  13. Li PA, Shuaib A, Miyashita H, He QP, Siesjo BK, Warner DS. Hyperglycemia enhances extracellular glutamate accumulation in rats subjected to forebrain ischemia. Stroke. 2000;31(1):183.

    CAS  PubMed  Google Scholar 

  14. Pulsinelli WA, Waldman S, Rawlinson D, Plum F. Moderate hyperglycemia augments ischemic brain damage: a neuropathologic study in the rat. Neurology. 1982;32(11):1239.

    CAS  PubMed  Google Scholar 

  15. Griepp RB, Stinson EB, Hollingsworth JF, Buehler D. Prosthetic replacement of the aortic arch. J Thorac Cardio­vasc Surg. 1975;70(6):1051.

    CAS  PubMed  Google Scholar 

  16. Borst HG, Schaudig A, Rudolph W. Arteriovenous fistula of the aortic arch: repair during deep hypothermia and circulatory arrest. J Thorac Cardiovasc Surg. 1964;48:443.

    CAS  PubMed  Google Scholar 

  17. Frist WH, Baldwin JC, Starnes VA, et al. A reconsideration of cerebral perfusion in aortic arch replacement. Ann Thorac Surg. 1986;42(3):273.

    Article  CAS  PubMed  Google Scholar 

  18. Ueda Y, Miki S, Kusuhara K, Okita Y, Tahata T, Yamanaka K. Surgical treatment of aneurysm or dissection involving the ascending aorta and aortic arch, utilizing circulatory arrest and retrograde cerebral perfusion. J Cardiovasc Surg (Torino). 1990;31(5):553.

    CAS  Google Scholar 

  19. Regragui I, Birdi I, Izzat MB, et al. The effects of cardiopulmonary bypass temperature on neuropsychologic outcome after coronary artery operations: a prospective randomized trial. J Thorac Cardiovasc Surg. 1996;112(4):1036.

    Article  CAS  PubMed  Google Scholar 

  20. Grigore AM, Mathew J, Grocott HP, et al. Prospective randomized trial of normothermic versus hypothermic cardiopulmonary bypass on cognitive function after coronary artery bypass graft surgery. Anesthesiology. 2001;95(5):1110.

    Article  CAS  PubMed  Google Scholar 

  21. Grigore AM, Grocott HP, Mathew JP, et al. The rewarming rate and increased peak temperature alter neurocognitive outcome after cardiac surgery. Anesth Analg. 2002;94(1):4.

    Article  PubMed  Google Scholar 

  22. Murkin JM, Martzke JS, Buchan AM, Bentley C, Wong CJ. A randomized study of the influence of perfusion technique and pH management strategy in 316 patients undergoing coronary artery bypass surgery. II. Neurologic and cognitive outcomes. J Thorac Cardiovasc Surg. 1995;110(2):349.

    Article  CAS  PubMed  Google Scholar 

  23. Butterworth J, Wagenknecht LE, Legault C. Attempted control of hyperglycemia during cardiopulmonary bypass fails to improve neurologic or neurobehavioral outcomes in patients without diabetes mellitus undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2005;130(5):1319.

    Article  PubMed  Google Scholar 

  24. Motallebzadeh R, Bland JM, Markus HS, Kaski JC, Jahangiri M. Neurocognitive function and cerebral emboli: randomized study of on-pump versus off-pump coronary artery bypass surgery. Ann Thorac Surg. 2007;83(2):475.

    Article  PubMed  Google Scholar 

  25. Lee JD, Lee SJ, Tsushima WT, et al. Benefits of off-pump bypass on neurologic and clinical morbidity: a prospective randomized trial. Ann Thorac Surg. 2003;76(1):18.

    Article  PubMed  Google Scholar 

  26. Diegeler A, Hirsch R, Schneider F, et al. Neuromonitoring and neurocognitive outcome in off-pump versus conventional coronary bypass operation. Ann Thorac Surg. 2000;69(4):1162.

    Article  CAS  PubMed  Google Scholar 

  27. Taggart DP, Browne SM, Halligan PW, Wade DT. Is cardiopulmonary bypass still the cause of cognitive dysfunction after cardiac operations? J Thorac Cardiovasc Surg. 1999;118(3):414.

    Article  CAS  PubMed  Google Scholar 

  28. Van Dijk D, Jansen EW, Hijman R, et al. Cognitive outcome after off-pump and on-pump coronary artery bypass graft surgery: a randomized trial. JAMA. 2002;287(11):1405.

    Article  PubMed  Google Scholar 

  29. Zamvar V, Williams D, Hall J, et al. Assessment of neurocognitive impairment after off-pump and on-pump techniques for coronary artery bypass graft surgery: prospective randomised controlled trial. BMJ. 2002;325(7375):1268.

    Article  PubMed  Google Scholar 

  30. Svensson LG, Nadolny EM, Penney DL, et al. Prospective randomized neurocognitive and S-100 study of hypothermic circulatory arrest, retrograde brain perfusion, and antegrade brain perfusion for aortic arch operations. Ann Thorac Surg. 2001;71(6):1905.

    Article  CAS  PubMed  Google Scholar 

  31. Svensson LG, Husain A, Penney DL, et al. A prospective randomized study of neurocognitive function and s-100 protein after antegrade or retrograde brain perfusion with hypothermic arrest for aortic surgery. J Thorac Cardiovasc Surg. 2000;119(1):163.

    Article  CAS  PubMed  Google Scholar 

  32. Nussmeier NA, Arlund C, Slogoff S. Neuropsychiatric complications after cardiopulmonary bypass: cerebral protection by a barbiturate. Anesthesiology. 1986;64(2):165.

    Article  CAS  PubMed  Google Scholar 

  33. Legault C, Furberg CD, Wagenknecht LE, et al. Nimodipine neuroprotection in cardiac valve replacement: report of an early terminated trial. Stroke. 1996;27(4):593.

    CAS  PubMed  Google Scholar 

  34. Murkin JM, Newman SP, Stump DA, Blumenthal JA. Statement of consensus on assessment of neurobehavioral outcomes after cardiac surgery. Ann Thorac Surg. 1995; 59(5):1289.

    Article  CAS  PubMed  Google Scholar 

  35. Murkin JM, Stump DA, Blumenthal JA, McKhann G. Defining dysfunction: group means versus incidence analysis – a statement of consensus. Ann Thorac Surg. 1997;64(3):904.

    Article  CAS  PubMed  Google Scholar 

  36. Benedict RH. Cognitive function after open-heart surgery: are postoperative neuropsychological deficits caused by cardiopulmonary bypass? Neuropsychol Rev. 1994;4(3):223.

    Article  CAS  PubMed  Google Scholar 

  37. Townes BD, Bashein G, Hornbein TF, et al. Neurobehavioral outcomes in cardiac operations. A prospective controlled study. J Thorac Cardiovasc Surg. 1989;98(5 Pt 1):774.

    CAS  PubMed  Google Scholar 

  38. Newman SP. Analysis and interpretation of neuropsychologic tests in cardiac surgery. Ann Thorac Surg. 1995;59(5):1351.

    Article  CAS  PubMed  Google Scholar 

  39. Benedict RH, Zgaljardic DJ. Practice effects during repeated administrations of memory tests with and without alternate forms. J Clin Exp Neuropsychol. 1998;20(3):339.

    Article  CAS  PubMed  Google Scholar 

  40. Lezak MD. Neuropsychological Assessment. 3rd ed. New York: Oxford University Press; 1995.

    Google Scholar 

  41. Bruggemans EF, Van Dijk JG, Huysmans HA. Residual cognitive dysfunctioning at 6 months following coronary artery bypass graft surgery. Eur J Cardiothorac Surg. 1995;9(11):636.

    Article  CAS  PubMed  Google Scholar 

  42. Borowicz LM, Goldsborough MA, Selnes OA, McKhann GM. Neuropsychologic change after cardiac surgery: a critical review. J Cardiothorac Vasc Anesth. 1996;10(1):105.

    Article  CAS  PubMed  Google Scholar 

  43. MacCallum RC, Zhang S, Preacher KJ, Rucker DD. On the practice of dichotomization of quantitative variables. Psychol Methods. 2002;7:19.

    Article  PubMed  Google Scholar 

  44. Blumenthal JA, Mahanna EP, Madden DJ, White WD, Croughwell ND, Newman MF. Methodological issues in the assessment of neuropsychologic function after cardiac surgery. Ann Thorac Surg. 1995;59(5):1345.

    Article  CAS  PubMed  Google Scholar 

  45. Mahanna EP, Blumenthal JA, White WD, et al. Defining neuropsychological dysfunction after coronary artery bypass grafting. Ann Thorac Surg. 1996;61(5):1342.

    Article  CAS  PubMed  Google Scholar 

  46. Newman S. The incidence and nature of neuropsychological morbidity following cardiac surgery. Perfusion. 1989;4:93.

    Article  Google Scholar 

  47. Jacobson NS, Follette WC, Revenstorf D, Baucom DH, Hahlweg K, Margolin G. Variability in outcome and clinical significance of behavioral marital therapy: a reanalysis of outcome data. J Consult Clin Psychol. 1984;52(4):497.

    Article  CAS  PubMed  Google Scholar 

  48. Keith JR, Puente AE, Malcolmson KL, Tartt S, Coleman AE, Marks HF Jr. Assessing postoperative cognitive change after cardiopulmonary bypass surgery. Neuropsychology. 2002;16(3):411.

    Article  PubMed  Google Scholar 

  49. Savageau JA, Stanton BA, Jenkins CD, Frater RW. Neuropsychological dysfunction following elective cardiac operation. II. A six-month reassessment. J Thorac Cardiovasc Surg. 1982;84(4):595.

    CAS  PubMed  Google Scholar 

  50. Moller JT, Cluitmans P, Rasmussen LS, et al. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International study of post-operative cognitive dysfunction. Lancet. 1998;351(9106):9857.

    Article  Google Scholar 

  51. Browne SM, Halligan PW, Wade DT, Taggart DP. Cognitive performance after cardiac operation: implications of regression toward the mean. J Thorac Cardiovasc Surg. 1999;117(3):481.

    Article  CAS  PubMed  Google Scholar 

  52. Bland JM, Altman DG. Some examples of regression towards the mean. BMJ. 1994;309(6957):780.

    CAS  PubMed  Google Scholar 

  53. Bland JM, Altman DG. Regression towards the mean. BMJ. 1994;308(6942):1499.

    CAS  PubMed  Google Scholar 

  54. Yudkin PL, Stratton IM. How to deal with regression to the mean in intervention studies. Lancet. 1996;347(8996):241.

    Article  CAS  PubMed  Google Scholar 

  55. Jacobson NS, Truax P. Clinical significance: a statistical approach to defining meaningful change in psychotherapy research. J Consult Clin Psychol. 1991;59(1):12.

    Article  CAS  PubMed  Google Scholar 

  56. Naugle RI, Chelune GJ, Cheek R, Luders H, Awad IA. Detection of changes in material-specific memory following temporal lobectomy using the Wechsler memory scale-revised. Arch Clin Neuropsychol. 1993;8(5):381.

    CAS  PubMed  Google Scholar 

  57. Sawrie SM. Analysis of cognitive change: a commentary on Keith et al. (2002). Neuropsychology. 2002;16(3):429.

    Article  PubMed  Google Scholar 

  58. Rasmussen LS, Larsen K, Houx P, Skovgaard LT, Hanning CD, Moller JT. The assessment of postoperative cognitive function. Acta Anaesthesiol Scand. 2001;45(3):275.

    Article  CAS  PubMed  Google Scholar 

  59. Vickers AJ, Altman DG. Statistics notes: analysing controlled trials with baseline and follow up measurements. BMJ. 2001;323(7321):1123.

    Article  CAS  PubMed  Google Scholar 

  60. Whitaker D. The use of Z scores in assessing neuropsychological change after cardiac operations. Ann Thorac Surg. 2003;75(3):1066. author reply 1066.

    Article  PubMed  Google Scholar 

  61. Collie A, Darby DG, Falleti MG, Silbert BS. Maruff P. Determining the extent of cognitive change after coronary surgery: a review of statistical procedures. Ann Thorac Surg. 2002;73(6):2005.

    Article  PubMed  Google Scholar 

  62. Johnsson P. Markers of cerebral ischemia after cardiac surgery. J Cardiothorac Vasc Anesth. 1996;10(1):120.

    Article  CAS  PubMed  Google Scholar 

  63. Missler U, Wiesmann M, Wittmann G, Magerkurth O, Hagenstrom H. Measurement of glial fibrillary acidic protein in human blood: analytical method and preliminary clinical results. Clin Chem. 1999;45(1):138.

    CAS  PubMed  Google Scholar 

  64. Marangos PJ, Schmechel D, Parma AM, Clark RL, Goodwin FK. Measurement of neuron-specific (NSE) and non-neuronal (NNE) isoenzymes of enolase in rat, monkey and human nervous tissue. J Neurochem. 1979;33(1):319.

    Article  CAS  PubMed  Google Scholar 

  65. Pahlman S, Esscher T, Bergh J, Steinholtz L, Nou E, Nilsson K. Neuron-specific enolase as a marker for neuroblastoma and small-cell carcinoma of the lung. Tumour Biol. 1984;5(2):119.

    CAS  PubMed  Google Scholar 

  66. Pahlman S, Esscher T, Bergvall P, Odelstad L. Purification and characterization of human neuron-specific enolase: radioimmunoassay development. Tumour Biol. 1984;5(2):127.

    CAS  PubMed  Google Scholar 

  67. Zimmer DB, Cornwall EH, Landar A, Song W. The S100 protein family: history, function, and expression. Brain Res Bull. 1995;37(4):417.

    Article  CAS  PubMed  Google Scholar 

  68. Barger SW, Wolchok SR, Van Eldik LJ. Disulfide-linked S100 beta dimers and signal transduction. Biochim Biophys Acta. 1992;1160(1):105.

    CAS  PubMed  Google Scholar 

  69. Abraha HD, Butterworth RJ, Bath PM, Wassif WS, Garthwaite J, Sherwood RA. Serum S-100 protein, relationship to clinical outcome in acute stroke. Ann Clin Biochem. 1997;34(Pt 5):546.

    PubMed  Google Scholar 

  70. Jonsson H, Johnsson P, Alling C, Backstrom M, Bergh C, Blomquist S. S100beta after coronary artery surgery: release pattern, source of contamination, and relation to neuropsychological outcome. Ann Thorac Surg. 1999;68(6):2202.

    Article  CAS  PubMed  Google Scholar 

  71. Ross SA, Cunningham RT, Johnston CF, Rowlands BJ. Neuron-specific enolase as an aid to outcome prediction in head injury. Br J Neurosurg. 1996;10(5):471.

    Article  CAS  PubMed  Google Scholar 

  72. Missler U, Wandinger KP, Wiesmann M, Kaps M, Wessel K. Acute exacerbation of multiple sclerosis increases plasma levels of S-100 protein. Acta Neurol Scand. 1997;96(3):142.

    Article  CAS  PubMed  Google Scholar 

  73. DeGiorgio CM, Gott PS, Rabinowicz AL, Heck CN, Smith TD, Correale JD. Neuron-specific enolase, a marker of acute neuronal injury, is increased in complex partial status epilepticus. Epilepsia. 1996;37(7):606.

    Article  CAS  PubMed  Google Scholar 

  74. van de Pol M, Twijnstra A, ten Velde GP. Menheere PP. Neuron-specific enolase as a marker of brain metastasis in patients with small-cell lung carcinoma. J Neurooncol. 1994;19(2):149.

    Article  PubMed  Google Scholar 

  75. Persson L, Hardemark HG, Gustafsson J, et al. S-100 protein and neuron-specific enolase in cerebrospinal fluid and serum: markers of cell damage in human central nervous system. Stroke. 1987;18(5):911.

    CAS  PubMed  Google Scholar 

  76. Fassbender K, Schmidt R, Schreiner A, et al. Leakage of brain-originated proteins in peripheral blood: temporal profile and diagnostic value in early ischemic stroke. J Neurol Sci. 1997;148(1):101.

    Article  CAS  PubMed  Google Scholar 

  77. Missler U, Wiesmann M, Friedrich C, Kaps M. S-100 protein and neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic stroke. Stroke. 1997;28(10):1956.

    CAS  PubMed  Google Scholar 

  78. Wunderlich MT, Ebert AD, Kratz T, Goertler M, Jost S, Herrmann M. Early neurobehavioral outcome after stroke is related to release of neurobiochemical markers of brain damage. Stroke. 1999;30(6):1190.

    CAS  PubMed  Google Scholar 

  79. Blomquist S, Johnsson P, Luhrs C, et al. The appearance of S-100 protein in serum during and immediately after cardiopulmonary bypass surgery: a possible marker for cerebral injury. J Cardiothorac Vasc Anesth. 1997;11(6):699.

    Article  CAS  PubMed  Google Scholar 

  80. Ali MS, Harmer M, Vaughan R. Serum S100 protein as a marker of cerebral damage during cardiac surgery. Br J Anaesth. 2000;85(2):287.

    Article  CAS  PubMed  Google Scholar 

  81. Vaage J, Anderson R. Biochemical markers of neurologic injury in cardiac surgery: the rise and fall of S100beta. J Thorac Cardiovasc Surg. 2001;122(5):853.

    Article  CAS  PubMed  Google Scholar 

  82. Toner I, Peden CJ, Hamid SK, Newman S, Taylor KM, Smith PL. Magnetic resonance imaging and neuropsychological changes after coronary artery bypass graft surgery: preliminary findings. J Neurosurg Anesthesiol. 1994;6(3):163.

    CAS  PubMed  Google Scholar 

  83. Harris DN, Bailey SM, Smith PL, Taylor KM, Oatridge A, Bydder GM. Brain swelling in first hour after coronary artery bypass surgery. Lancet. 1993;342(8871):586.

    Article  CAS  PubMed  Google Scholar 

  84. Kohn A. Magnetic resonance imaging registration and quantitation of the brain before and after coronary artery bypass graft surgery. Ann Thorac Surg. 2002;73(1):S363.

    Article  PubMed  Google Scholar 

  85. Bendszus M, Reents W, Franke D, et al. Brain damage after coronary artery bypass grafting. Arch Neurol. 2002;59(7):1090.

    Article  PubMed  Google Scholar 

  86. Warach S, Gaa J, Siewert B, Wielopolski P, Edelman RR. Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging. Ann Neurol. 1995;37(2):231.

    Article  CAS  PubMed  Google Scholar 

  87. Knipp SC, Matatko N, Wilhelm H, et al. Evaluation of brain injury after coronary artery bypass grafting. A prospective study using neuropsychological assessment and diffusion-weighted magnetic resonance imaging. Eur J Cardiothorac Surg. 2004;25(5):791.

    Article  PubMed  Google Scholar 

  88. Abu-Omar Y, Cifelli A, Matthews PM, Taggart DP. The role of microembolisation in cerebral injury as defined by functional magnetic resonance imaging. Eur J Cardiothorac Surg. 2004;26(3):586.

    Article  PubMed  Google Scholar 

  89. Abu-Omar Y, Cader S, Guerrieri Wolf L, Pigott D, Matthews PM, Taggart DP. Short-term changes in cerebral activity in on-pump and off-pump cardiac surgery defined by functional magnetic resonance imaging and their relationship to microembolization. J Thorac Cardiovasc Surg. 2006;132(5):1119.

    Article  PubMed  Google Scholar 

  90. Matthews PM, Clare S, Adcock J. Functional magnetic resonance imaging: clinical applications and potential. J Inherit Metab Dis. 1999;22(4):337.

    Article  CAS  PubMed  Google Scholar 

  91. Tardiff BE, Newman MF, Saunders AM, et al. Preliminary report of a genetic basis for cognitive decline after cardiac operations. The Neurologic Outcome Research Group of the Duke Heart Center. Ann Thorac Surg. 1997;64(3):715.

    Article  CAS  PubMed  Google Scholar 

  92. Edmonds HL Jr. Advances in neuromonitoring for cardiothoracic and vascular surgery. J Cardiothorac Vasc Anesth. 2001;15(2):241.

    Article  PubMed  Google Scholar 

  93. Anderson RE, Li TQ, Hindmarsh T, Settergren G, Vaage J. Increased extracellular brain water after coronary artery bypass grafting is avoided by off-pump surgery. J Cardiothorac Vasc Anesth. 1999;13:698.

    Article  CAS  PubMed  Google Scholar 

  94. Tunick PA, Rosenzweig BP, Katz ES, Freedberg RS, Perez JL, Kronzon I. High risk for vascular events in patients with protruding aortic atheromas: a prospective study. J Am Coll Cardiol. 1994;23(5):1085.

    Article  CAS  PubMed  Google Scholar 

  95. Wareing TH, Davila-Roman VG, Barzilai B, Murphy SF, Kouchoukos NT. Management of the severely atherosclerotic ascending aorta during cardiac operations. A strategy for detection and treatment. J Thorac Cardiovasc Surg. 1992;3(3):453.

    Google Scholar 

  96. Davila-Roman VG, Murphy SF, Nickerson NJ, Kouchoukos NT, Schechtman KB, Barzilai B. Atherosclerosis of the ascending aorta is an independent predictor of long-term neurologic events and mortality. J Am Coll Cardiol. 1999;33(5):1308.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Motallebzadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Motallebzadeh, R., Jahangiri, M. (2011). The Design and Methodology of Clinical Studies of Neuroprotection in Cardiac Surgery. In: Bonser, R., Pagano, D., Haverich, A. (eds) Brain Protection in Cardiac Surgery. Springer, London. https://doi.org/10.1007/978-1-84996-293-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-293-3_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-292-6

  • Online ISBN: 978-1-84996-293-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics