Skip to main content

Measuring Networks

  • Chapter
  • 3399 Accesses

Abstract

We have adopted the view of graphs and, more generally, cell complexes as a domain upon which we may apply the tools of calculus to formulate differential equations and to analyze data. An important aspect of the discrete differential operators is that the operators are defined by the topology of the domain itself. Therefore, in an effort to provide a complete treatment of these differential operators, we examine in this chapter the properties of the network which may be extracted from the structure of these operators. In addition to the network properties extracted directly from the differential operators, we also review other methods for measuring the structural properties of a network. Specifically, the properties of the network that we consider are based on distances, partitioning, geometry, and topology. Our particular focus will be on the measurement of these properties from the graph structure. Applications will illustrate the use of these measures to predict the importance of nodes and to relate these measures to other properties of the subject being modeled by the network.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In the circuit theory analogy, for the two indices to be compatible the prescribed edge weights of a weighted graph are interpreted as resistances when measuring the Wiener index, and the same prescribed edge weights on the weighted graph are interpreted as conductances when measuring the Kirchhoff index.

  2. 2.

    The exterior face is a device to enable a finite graph to be defined such that it has no boundary and is therefore closed. This imparts a global topology on the graph—that of a sphere or a sphere with handles—which may be interpreted as a finite graph including a face “at infinity”, in analogy to projections of the sphere into the plane (e.g., by stereographic projection) in which the coordinate at the pole of the sphere opposite the origin is mapped to the point at infinity on the flat plane.

References

  1. Albert, R., Jeong, H., Barabasi, A.: Diameter of the world wide web. Nature 401(6749), 130–131 (1999)

    Article  Google Scholar 

  2. Alon, N.: Eigenvalues and expanders. Combinatorica 6, 83–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N., Milman, V.: λ 1, isoperimetric inequalities for graphs and superconcentrators. Journal of Combinatorial Theory. Series B 38, 73–88 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bader, D., Kintali, S., Madduri, K., Mihail, M.: Approximating betweenness centrality. In: Proc. of WAW, Lecture Notes in Computer Science, vol. 4863, pp. 124–137. Springer, Berlin (2007)

    Google Scholar 

  5. Barabasi, A., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  6. Biggs, N.: Algebraic Graph Theory. Cambridge Tracts in Mathematics, vol. 67. Cambridge University Press, Cambridge (1974)

    Book  MATH  Google Scholar 

  7. Biggs, N., Lloyd, E., Wilson, R.: Graph Theory, 1736–1936. Clarendon, Oxford (1986)

    MATH  Google Scholar 

  8. Bonchev, D.: Information Theoretic Indices for Characterization of Chemical Structure. Research Studies Press, Chichester (1983)

    Google Scholar 

  9. Bonchev, D., Balaban, A., Liu, X., Klein, D.: Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances. International Journal of Quantum Chemistry 50(1), 1–20 (1994)

    Article  Google Scholar 

  10. Bonchev, D., Rouvray, D.H. (eds.): Chemical Graph Theory—Introduction and Fundamentals. Gordon & Breach, New York (1991)

    MATH  Google Scholar 

  11. Borgatti, S.: Identifying sets of key players in a social network. Computational and Mathematical Organization Theory 12(1), 21–34 (2006)

    Article  MATH  Google Scholar 

  12. Bos̆njak, N., Mihalić, Z., Trinajstić, N.: Application of topographic indices to chromatographic data: Calculation of the retention indices of alkanes. Journal of Chromatography 540(1–2), 430–440 (1991)

    Google Scholar 

  13. Brandes, U.: A faster algorithm for betweenness centrality. Journal of Mathematical Sociology 25(2), 163–177 (2001)

    Article  MATH  Google Scholar 

  14. Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. In: Gunning, R. (ed.) Problems in Analysis, pp. 195–199. Princeton University Press, Princeton (1970)

    Google Scholar 

  15. Chung, F.R.K.: Spectral Graph Theory. Regional Conference Series in Mathematics, vol. 92. Am. Math. Soc., Providence (1997)

    MATH  Google Scholar 

  16. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  17. Costa, L., Rodrigues, F., Travieso, G., Boas, P.: Characterization of complex networks: A survey of measurements. Advances in Physics 56(1), 167–242 (2007)

    Article  Google Scholar 

  18. Demir, C., Gultekin, S., Yener, B.: Learning the topological properties of brain tumors. In: Proc. of IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), vol. 2, pp. 262–270 (2005)

    Google Scholar 

  19. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  20. Diudea, M.V., Gutman, I.: Wiener-type topological indices. Croatica Chemica Acta 71(1), 21–51 (1998)

    Google Scholar 

  21. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  22. Dodziuk, J.: Difference equations, isoperimetric inequality and the transience of certain random walks. Transactions of the American Mathematical Society 284, 787–794 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dodziuk, J., Kendall, W.S.: Combinatorial Laplacians and isoperimetric inequality. In: Ellworthy, K.D. (ed.) From Local Times to Global Geometry, Control and Physics. Pitman Research Notes in Mathematics Series, vol. 150, pp. 68–74. Longman, Harlow (1986)

    Google Scholar 

  24. Edelsbrunner, H.: Geometry and Topology of Mesh Generation. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  25. Erdős, P., Rényi, A.: On random graphs. I. Publicationes Mathematicae Debrecen 6, 290–297 (1959)

    MathSciNet  Google Scholar 

  26. Erdős, P., Rényi, A.: On the evolution of random graphs. Közlemények Publications 5, 17–61 (1960)

    Google Scholar 

  27. Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Mathematical Journal 23(98), 298–305 (1973)

    MathSciNet  Google Scholar 

  28. Friedman, J.: Computing Betti numbers via combinatorial Laplacians. Algorithmica 21(4), 331–346 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Grady, L., Schwartz, E.L.: Faster graph-theoretic image processing via small-world and quadtree topologies. In: Proc. of 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 360–365. IEEE Comput. Soc., Washington (2004)

    Chapter  Google Scholar 

  30. Grady, L., Schwartz, E.L.: Isoperimetric partitioning: A new algorithm for graph partitioning. SIAM Journal on Scientific Computing 27(6), 1844–1866 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Graovac, A., Gutman, I., Trinajstić, N.: Topological Approach to the Chemistry of Conjugated Molecules. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  32. Grassy, G., Calas, B., Yasri, A., Lahana, R., Woo, J., Iyer, S., Kaczorek, M., Floch, R., Buelow, R.: Computer-assisted rational design of immunosuppressive compounds. Nature Biotechnology 16, 748–752 (1998)

    Article  Google Scholar 

  33. Gremban, K., Miller, G., Zagha, M.: Performance evaluation of a new parallel preconditioner. In: Proceedings of 9th International Parallel Processing Symposium, pp. 65–69. IEEE Comput. Soc., Santa Barbara (1995)

    Chapter  Google Scholar 

  34. Gunduz, C., Yener, B., Gultekin, S.: The cell graphs of cancer. In: Proc. of International Symposium on Molecular Biology ISMB/ECCB, vol. 20, pp. 145–151 (2004)

    Google Scholar 

  35. Gutman, I., Kortvelyesi, T.: Wiener indices and molecular surfaces. Zeitschrift für Naturforschung A 50(7), 669–671 (1995)

    Google Scholar 

  36. Gutman, I., Mohar, B.: The quasi-Wiener and the Kirchhoff indices coincide. Journal of Chemical Information and Computer Sciences 36(5), 982–985 (1996)

    Google Scholar 

  37. Hansen, P., Jurs, P.: Chemical applications of graph theory: Part I. Fundamentals and topological indices. Journal of Chemical Education 65(7), 574–580 (1988)

    Article  Google Scholar 

  38. Harary, F.: Graph Theory. Addison-Wesley, Reading (1994)

    Google Scholar 

  39. Henle, M.: A Combinatorial Introduction to Topology. Dover, New York (1994)

    MATH  Google Scholar 

  40. Hosoya, H.: A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bulletin of the Chemical Society of Japan 44, 2332–2339 (1971)

    Article  Google Scholar 

  41. Ivanciuc, O., Taraviras, S.L., Cabrol-Bass, D.: Quasi-orthogonal basis set of molecular graph descriptors as a chemical diversity measure. Journal of Chemical Information and Computer Sciences 40, 126–134 (2000)

    Google Scholar 

  42. Kim, H., Kim, J.: Cyclic topology in complex networks. Physical Review E 72(3), 036109 (2005)

    Article  Google Scholar 

  43. Klein, D.J., Randić, M.: Resistance distance. Journal of Mathematical Chemistry 12(1), 81–95 (1993)

    Article  MathSciNet  Google Scholar 

  44. Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlotowski, O.: Centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. Lecture Notes in Computer Science, vol. 3418. Springer, Berlin (2005)

    Google Scholar 

  45. Lefschetz, S.: Algebraic Topology. Am. Math. Soc. Col. Pub., vol. 27. Am. Math. Soc., Providence (1942)

    MATH  Google Scholar 

  46. Lukovits, I.: Decomposition of the Wiener topological index. Application to drug-receptor interactions. Journal of the Chemical Society. Perkin Transactions 2 9, 1667–1671 (1988)

    Article  Google Scholar 

  47. Lukovits, I.: Correlation between components of the Wiener index and partition coefficients of hydrocarbons. International Journal of Quantum Chemistry 44(s 19), 217–223 (1992)

    Article  Google Scholar 

  48. Massey, W.: A Basic Course in Algebraic Topology. Springer, Berlin (1993)

    Google Scholar 

  49. Merris, R.: An edge version of the matrix-tree theorem and the Wiener index. Linear and Multilinear Algebra 25(4), 291–296 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  50. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 35–57. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  51. Mihalić, Z., Trinajstić, N.: A graph-theoretical approach to structure: Property relationships. Journal of Chemical Education 69(9), 701–712 (1992)

    Article  Google Scholar 

  52. Milgram, S.: The small world problem. Psychology Today 2(1), 60–67 (1967)

    MathSciNet  Google Scholar 

  53. Mohar, B.: Isoperimetric inequalities, growth and the spectrum of graphs. Linear Algebra and Its Applications 103, 119–131 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  54. Mohar, B.: Isoperimetric numbers of graphs. Journal of Combinatorial Theory. Series B 47, 274–291 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  55. Opsahl, T., Panzarasa, P.: Clustering in weighted networks. Social Networks 31(2), 155–163 (2009)

    Article  Google Scholar 

  56. Rouvray, D.H.: The prediction of biological activity using molecular connectivity indices. Acta Pharmaceutica Jugoslavica 36, 239–251 (1986)

    Google Scholar 

  57. Strogatz, S.: Exploring complex networks. Nature 410(6825), 268–276 (2001)

    Article  Google Scholar 

  58. Surazhsky, T., Magid, E., Soldea, O., Elber, G., Rivlin, E.: A comparison of Gaussian and mean curvatures estimation methods on triangular meshes. In: Proc. of IEEE International Conference on Robotics and Automation ICRA’03, vol. 1 (2003)

    Google Scholar 

  59. Sylvester, J.J.: Chemistry and algebra. Nature 17(432), 284 (1878)

    Article  Google Scholar 

  60. Taraviras, S.L., Ivanciuc, O., Cabrol-Bass, D.: Identification of groupings of graph theoretical molecular descriptors using a hybrid cluster analysis approach. Journal of Chemical Information and Computer Sciences 40, 1128–1146 (2000)

    Google Scholar 

  61. Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  62. Watts, D.J.: Small Worlds: The Dynamics of Networks Between Order and Randomness. Princeton Studies in Complexity. Princeton University Press, Princeton (1999)

    Google Scholar 

  63. Wiener, H.: Correlation of heats of isomerization and differences in heats of vaporization of isomer among the paraffin hydrocarbons. Journal of the American Chemical Society 69, 2636–2638 (1947)

    Article  Google Scholar 

  64. Wiener, H.: Structural determination of paraffin boiling points. Journal of the American Chemical Society 69, 17–20 (1947)

    Article  Google Scholar 

  65. Zachary, W.W.: An information flow model for conflict and fission in small groups. Journal of Anthropological Research 33, 452–473 (1977)

    Google Scholar 

  66. Zomorodian, A.: Topology for Computing. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo J. Grady .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Grady, L.J., Polimeni, J.R. (2010). Measuring Networks. In: Discrete Calculus. Springer, London. https://doi.org/10.1007/978-1-84996-290-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-290-2_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-289-6

  • Online ISBN: 978-1-84996-290-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics