Skip to main content

Building a Weighted Complex from Data

  • Chapter
  • 3367 Accesses

Abstract

In some applications, both the neighborhood structure of the data and the weights of the cells are naturally and directly defined by the problem at hand (e.g., road networks, social networks, communication networks, chemical graph theory or surface simplification). However, in many other applications the appropriate representation of the data to be analyzed is not provided (e.g., machine learning). Therefore, to use the tools of discrete calculus, a practitioner must determine the topology and weights of the graph or complex from the data that is most appropriate for solving the problem. In this chapter, we will discuss different techniques for generating a meaningful weighted complex from an embedding or from the data itself. Our focus will be primarily on generating weighted edges and faces from node and/or edge data, but we additionally demonstrate how these techniques may be applied to weighting higher-order structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A parallel machine, with one processor devoted to one node or to a small number of nodes, can potentially be used to address fully connected graphs, since each processor must do work only on the order of \( |\mathcal{V}| \). Although such machines are becoming increasingly common, the computers of today are still predominantly unable to process fully connected graphs of any size.

  2. 2.

    In graph theory, a bridge is an edge whose deletion would result in increasing the number of connected components in the graph. Thus an edge is a bridge if (and only if) it is not contained in a cycle.

  3. 3.

    Note that when the graph genus equals zero then, by the relationship between the Euler Characteristic and genus, \( |\mathcal{F}| = |\mathcal{E}| - |\mathcal{V}| + 2 \). In contrast, the number of linearly independent cycles (spanning the nullspace of \(\boldsymbol{\mathsf {A}}\)) is given by \( |\mathcal{F}| = |\mathcal{E}| - |\mathcal{V}| + 1 \). Therefore, a planar graph implicitly has an extra face that is not linearly independent. This is the “outside face” described in Chap. 2.

  4. 4.

    Recall that, for a connected graph with \( \mathcal{V} \) and \( \mathcal{E} \), a tree subgraph is identified by the connected subgraph comprised of \( \mathcal{V} \) and \( \mathcal{E}_{{\rm tree}} \subseteq \mathcal{E} \), where \( |\mathcal{E}_{{\rm tree}} | = |\mathcal{V}| - 1 \). The cotree subgraph corresponding to a tree subgraph is the (possibly disconnected) subgraph consisting of \( \mathcal{V} \) and the set of the remaining edges \( \mathcal{E}_{{\rm cotree}} = \mathcal{E} - \mathcal{E}_{{\rm tree}} \). Thus the union of the edge set from any given tree with the edge set from its cotree is equivalent to the original graph.

  5. 5.

    This concept appears again in Chap. 5 and Appendix B.

  6. 6.

    Based on the available evidence at the time of writing, the authors would suggest using a Cauchy function for most applications, although the Welsch function and Tukey functions also seem to perform well. The remaining robust functions have yet to prove as generically useful.

  7. 7.

    When \(\boldsymbol{\mathsf {G}}^{-1}_{2}\) and \(\boldsymbol {\mathsf{G}}_{0}\) are matrices, these viscosities are linear and therefore the flow field may be viewed as a Newtonian fluid. The more complicated analysis of non-Newtonian fluids would describe the behavior of the flows when \(\boldsymbol{\mathsf {G}}^{-1}_{2}\) and \(\boldsymbol{\mathsf{G}}_{0}\) are replaced by nonlinear functions.

  8. 8.

    Desbrun et al. [102] distinguish between a local metric which is defined only for pairs of nodes which share an edge and a global metric which is defined for any pair of nodes in a connected graph. In this terminology, our treatment will focus exclusively on global metrics.

References

  1. Awate, S.P., Whitaker, R.T.: Unsupervised, information-theoretic, adaptive image filtering for image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(3), 364–376 (2006)

    Article  Google Scholar 

  2. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software 22(4), 469–483 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems, vol. 14, pp. 585–591. MIT Press, Cambridge (2001)

    Google Scholar 

  4. Berger, F., Gritzmann, P., de Vries, S.: Minimum cycle bases for network graphs. Algorithmica 40(1), 51–62 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bezem, G.J., van Leeuwen, J.: Enumeration in graphs. Technical Report RUU-CS-87-7, Rijksuniversiteit Utrecht (1987)

    Google Scholar 

  6. Black, M.J., Sapiro, G., Marimont, D.H., Heeger, D.: Robust anisotropic diffusion. IEEE Transactions on Image Processing 7(3), 421–432 (1998)

    Article  Google Scholar 

  7. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: Proceedings of International Conference on Computer Vision, vol. 1 (2003)

    Google Scholar 

  8. Bruckstein, A.M., Netravali, A.N., Richardson, T.J.: Epi-convergence of discrete elastica. Applicable Analysis 79(1–2), 137–171 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Modeling and Simulation 4(2), 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cassell, A.C., Henderson, J.C., Ramachandran, K.: Cycle bases of minimal measure for the structural analysis of skeletal structures by the flexibility method. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 350, 61–70 (1976)

    Article  MATH  Google Scholar 

  11. Chua, L.O., Chen, L.: On optimally sparse cycle and coboundary basis for a linear graph. IEEE Transactions on Circuit Theory CT-20, 495–503 (1973)

    Google Scholar 

  12. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  13. Cremers, D., Grady, L.: Statistical priors for efficient combinatorial optimization via graph cuts. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) Computer Vision—ECCV 2006. Lecture Notes in Computer Science, vol. 3, pp. 263–274. Springer, Berlin (2006)

    Chapter  Google Scholar 

  14. de Pina, J.: Applications of shortest path methods. Ph.D. thesis, University of Amsterdam, Netherlands (1995)

    Google Scholar 

  15. Desbrun, M., Hirani, A.N., Leok, M., Marsden, J.E.: Discrete exterior calculus. arXiv:math.DG/0508341 (2005)

  16. Doi, E., Lewicki, M.S.: Relations between the statistical regularities of natural images and the response properties of the early visual system. In: Japanese Cognitive Science Society, SIG P&P, pp. 1–8 (2005)

    Google Scholar 

  17. Elmoataz, A., Lézoray, O., Bougleux, S.: Nonlocal discrete regularization on weighted graphs: A framework for image and manifold processing. IEEE Transactions on Image Processing 17(7), 1047–1060 (2008)

    Article  MathSciNet  Google Scholar 

  18. Geman, D., Reynolds, G.: Constrained restoration and the discovery of discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(3), 367–383 (1992)

    Article  Google Scholar 

  19. Geman, S., McClure, D.: Statistical methods for tomographic image reconstruction. In: Proc. 46th Sess. Int. Stat. Inst. Bulletin ISI, vol. 52, pp. 4–21 (1987)

    Google Scholar 

  20. Gibbons, A.: Algorithmic Graph Theory. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  21. Golynski, A., Horton, J.: A polynomial time algorithm to find the minimum cycle basis of a regular matroid. In: Lecture Notes in Computer Science, pp. 200–209. Springer, Berlin (2002)

    Google Scholar 

  22. Gotsman, C., Kaligosi, K., Mehlhorn, K., Michail, D., Pyrga, E.: Cycle bases of graphs and sampled manifolds. Computer Aided Geometric Design 24(8–9), 464–480 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grady, L.: Space-variant computer vision: A graph-theoretic approach. Ph.D. thesis, Boston University, Boston, MA (2004)

    Google Scholar 

  24. Grady, L., Jolly, M.P.: Weights and topology: A study of the effects of graph construction on 3D image segmentation. In: Metaxas, D.N. et al. (eds.) Proc. of MICCAI 2008. Lecture Notes in Computer Science, vol. 5241, pp. 153–161. Springer, Berlin (2008)

    Google Scholar 

  25. Grady, L., Schiwietz, T., Aharon, S., Westermann, R.: Random walks for interactive alpha-matting. In: Villanueva, J.J. (ed.) Proc. of Fifth IASTED International Conference on Visualization, Imaging and Image Processing, pp. 423–429. Acta Press, Benidorm (2005)

    Google Scholar 

  26. Grady, L., Schwartz, E.L.: Faster graph-theoretic image processing via small-world and quadtree topologies. In: Proc. of 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 360–365. IEEE Comput. Soc., Washington (2004)

    Chapter  Google Scholar 

  27. Grady, L., Schwartz, E.L.: Isoperimetric partitioning: A new algorithm for graph partitioning. SIAM Journal on Scientific Computing 27(6), 1844–1866 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gremban, K.: Combinatorial preconditioners for sparse, symmetric diagonally dominant linear systems. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA (1996)

    Google Scholar 

  29. Gremban, K., Miller, G., Zagha, M.: Performance evaluation of a new parallel preconditioner. In: Proceedings of 9th International Parallel Processing Symposium, pp. 65–69. IEEE Comput. Soc., Santa Barbara (1995)

    Chapter  Google Scholar 

  30. Gross, J., Tucker, T.: Topological Graph Theory. Dover, New York (2001)

    MATH  Google Scholar 

  31. Gross, J.L., Yellen, J.: Graph Theory and Its Applications. CRC Press, Boca Raton (1998)

    Google Scholar 

  32. He, X., Niyogi, P.: Locality preserving projections. In: Advances in Neural Information Processing Systems, vol. 16, pp. 153–160. MIT Press, Cambridge (2003)

    Google Scholar 

  33. Heiler, M., Keuchel, J., Schnorr, C.: Semidefinite clustering for image segmentation with a-priori knowledge. In: Proc. of the 27th DAGM Symposium, pp. 309–317. Springer, Berlin (2005)

    Google Scholar 

  34. Horton, J.: A polynomial-time algorithm to find the shortest cycle basis of a graph. SIAM Journal on Computing 16, 358 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ishikawa, H.: Higher-order clique reduction in binary graph cut. In: Proc. of CVPR (2009)

    Google Scholar 

  36. Jaeger, F.: A survey of the cycle double cover conjecture. In: Alspach, B.R., Godsil, C.D. (eds.) Cycles in Graphs. Annals of Discrete Mathematics, vol. 27, pp. 1–12. Elsevier, Amsterdam (1985)

    Chapter  Google Scholar 

  37. Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: An algorithm for minimum cycle basis of graphs. Algorithmica 52(3), 333–349 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Klein, D.: Resistance-distance sum rules. Croatica Chemica Acta 75(2), 633–649 (2002)

    Google Scholar 

  39. Klein, D.J., Randić, M.: Resistance distance. Journal of Mathematical Chemistry 12(1), 81–95 (1993)

    Article  MathSciNet  Google Scholar 

  40. Kohli, P., Kumar, M., Torr, P.: P3 & beyond: Solving energies with higher order cliques. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  41. Kohn, R.V., Vogelius, M.: Relaxation of a variational method for impedance computed tomography. Communications on Pure and Applied Mathematics 40(6), 745–777 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kolmogorov, V., Rother, C.: Minimizing nonsubmodular functions with graph cuts—a review. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(7), 1274–1279 (2007)

    Article  Google Scholar 

  43. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 147–159 (2004)

    Article  Google Scholar 

  44. Komodakis, N., Paragios, N.: Higher-order clique reduction in binary graph cut. In: Proc. of CVPR (2009)

    Google Scholar 

  45. Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image matting. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(2), 228–242 (2008)

    Article  Google Scholar 

  46. Liang, Z., Hart, H.: Bayesian image processing of data from constrained source distributions—I. Non-valued, uncorrelated and correlated constraints. Bulletin of Mathematical Biology 49(1), 51–74 (1987)

    MathSciNet  MATH  Google Scholar 

  47. Liu, H., Wang, J.: A new way to enumerate cycles in graph. In: Proc. of AICT/ICIW. IEEE (2006)

    Google Scholar 

  48. Liu, T.: A heuristic algorithm for finding circuits to double cover a bridgeless graph. Technical Report 57-2001, Rutgers (2001)

    Google Scholar 

  49. MacLane, S.: A combinatorial condition for planar graphs. Fundamenta Mathematicae 28, 22–32 (1937)

    MATH  Google Scholar 

  50. Mateti, P., Deo, N.: On algorithms for enumerating all circuits of a graph. SIAM Journal on Computing 5, 90 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  51. Mehlhorn, K., Michail, D.: Implementing minimum cycle basis algorithms. Journal of Experimental Algorithmics 11 (2007)

    Google Scholar 

  52. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)

    Article  Google Scholar 

  53. Rao, V., Murti, V.: Enumeration of all circuits of a graph. Proceedings of the IEEE 57, 700–701 (1969)

    Article  Google Scholar 

  54. Schoenemann, T., Kahl, F., Cremers, D.: Curvature regularity for region-based image segmentation and inpainting: A linear programming relaxation. In: IEEE International Conference on Computer Vision (ICCV), Kyoto, Japan (2009)

    Google Scholar 

  55. Seymour, P.: Sums of circuits. In: Bondy, J.A., Murty, U.R.S. (eds.) Graph Theory and Related Topics, pp. 341–355. Academic Press, New York (1979)

    Google Scholar 

  56. Shewchuk, J.R.: Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In: Lin, M.C., Manocha, D. (eds.) Applied Computational Geometry: Towards Geometric Engineering. Lecture Notes in Computer Science, vol. 1148, pp. 203–222. Springer, Berlin (1996)

    Chapter  Google Scholar 

  57. Shewchuk, J.: Delaunay refinement algorithms for triangular mesh generation. Computational Geometry: Theory and Applications 22(1–3), 21–74 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  58. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  59. Stahl, S.: Generalized embedding schemes. Journal of Graph Theory 2, 41–52 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  60. Tewari, G., Gotsman, C., Gortler, S.: Meshing genus-1 point clouds using discrete one-forms. Computers & Graphics 30(6), 917–926 (2006)

    Article  Google Scholar 

  61. Tiernan, J.: An efficient search algorithm to find the elementary circuits of a graph. Comm. of the ACM 13(12), 726 (1970)

    Article  MathSciNet  Google Scholar 

  62. Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  63. Watts, D.J.: Small Worlds: The Dynamics of Networks Between Order and Randomness. Princeton Studies in Complexity. Princeton University Press, Princeton (1999)

    Google Scholar 

  64. Yu, S.X., Shi, J.: Segmentation with pairwise attraction and repulsion. In: Proc. of ICCV, vol. 1. IEEE Comput. Soc., Los Alamitos (2001)

    Google Scholar 

  65. Yu, S.X., Shi, J.: Understanding popout through repulsion. In: Proc. of CVPR, vol. 2. IEEE Comput. Soc., Los Alamitos (2001)

    Google Scholar 

  66. Zhang, F., Hancock, E.R.: Graph spectral image smoothing using the heat kernel. Pattern Recognition 41(11), 3328–3342 (2008)

    Article  MATH  Google Scholar 

  67. Zhang, F., Li, H., Jiang, A., Chen, J., Luo, P.: Face tracing based geographic routing in nonplanar wireless networks. In: Proc. of the 26th IEEE INFOCOM (2007)

    Google Scholar 

  68. Zhang, Z.: Parameter estimation techniques: A tutorial with application to conic fitting. Image and Vision Computing 15(1), 59–76 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo J. Grady .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Grady, L.J., Polimeni, J.R. (2010). Building a Weighted Complex from Data. In: Discrete Calculus. Springer, London. https://doi.org/10.1007/978-1-84996-290-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-290-2_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-289-6

  • Online ISBN: 978-1-84996-290-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics