Skip to main content

Character Based Adaptation

  • Chapter
  • First Online:
Modeling and Simulating Bodies and Garments
  • 886 Accesses

Abstract

This chapter reviews the techniques that are required for efficiently and accurately animate virtual human models. The techniques described here enable one to tailor the animation to specific subjects, including their shape, and weight characteristics. These animations can then be used to produce virtual catwalks, which in turn can be used as a basis for a virtual try on application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There could be more than one function to minimize, however this was left aside here for the sake of simplicity.

References

  • Abe Y., Liu K., Popovic Z.: Momentum-based parameterization of dynamic character motion. Graph. Models, 68(2):194–211, Academic Press Professional, Inc. (2006)

    Article  MATH  Google Scholar 

  • Allen B., Curless B., Popovic Z.: The space of human body shapes: reconstruction and parameterization from range scans. SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers, 587–594, (2003)

    Google Scholar 

  • Baerlocher P., Boulic R.: An inverse kinematic architecture enforcing an arbitrary number of strict priority levels. The Visual Computer, 20(6):402–417, Springer-Verlag, New York, (2003)

    Google Scholar 

  • Betts J.T., Smith R.: Practical methods for optimal control using nonlinear programming. Society for Industrial and Applied Mathematics, Philadelphia, PA, (2001)

    MATH  Google Scholar 

  • Bindiganavale R., Badler N.I.: Motion abstraction and mapping with spatial contraints. In CAPTECH ’98: Proceedings of the international workshop on modelling and motion capture techniques for virtual environments, 70–82, London, UK, Springer-Verlag, (1998)

    Google Scholar 

  • Blackman R.B., Tukey J.W.: The measurement of power spectra, from the point of view of communications Engineering. Dover Plublications, (1959)

    Google Scholar 

  • Boulic R., Huang Z., Thalmann D.: A comparison of design strategies for 3D human motions. In human comfort and security of information systems; Advanced interface for the Information Society, 19–21, Springer-Verlag, (1997)

    Google Scholar 

  • Boulic R., Le Callennec B., Herren M., Bay H.: Experimenting prioritized ik for motion editing. In: Proceedings of Eurographics, (2003)

    Google Scholar 

  • Bruderlin A., Williams L.: Motion signal processing. In: Proceedings of the 22nd annual conference on computer graphics and interactive techniques, 97–104, (1995)

    Google Scholar 

  • Buhmann M.D., Ablowitz M.J.: Radial basis functions: theory and implementations. Cambridge University Press, (2003)

    Google Scholar 

  • Catmull E., Rom R.: A class of local interpolating splines. Computer aided geometric design, 317–326 (1974)

    Google Scholar 

  • Chai J., Hodgins J.K.: Constraint-based motion optimization using a statistical dynamic model. In: SIGGRAPH ’07: ACM SIGGRAPH 2007 Papers, p. 8, New York, (2007)

    Google Scholar 

  • Chandler R.F., Clauser C.E., McConville J.T., Reynolds H.M., Young J.W.: Investigation of intertial properties of the human body. US Department of Transportation report, (1975)

    Google Scholar 

  • Choi K.J., Ko H.S.: Online motion retargeting. Journal of Visualization and Computer Animation, 11(5):223–235, (2000)

    Article  MATH  Google Scholar 

  • Cohen M.F.: Interactive spacetime control for animation. SIGGRAPH Comput Graph, 26(2):293–302, (1992)

    Article  Google Scholar 

  • Dempster W.T.: Space requirements of the seated operator. Wright Air Development Center report-55-159, (1955)

    Google Scholar 

  • Glardon P., Boulic R., Thalmann D.: Robust on-line adaptive footplant detection and enforcement for locomotion. Vis Comput 22(3):194–209, (2006)

    Article  Google Scholar 

  • Gleicher M.: Motion editing with spacetime constraints. In: Proceedings of SI3D’97 symposium on interactive 3D graphics, p. 139-ff, New York, ACM Press, (1997)

    Google Scholar 

  • Gleicher M.: Retargeting motion to new characters. In: Proceedings of SIGGRAPH 1998, Computer graphics proceedings, Annual conference series, ACM Press/ACM SIGGRAPH, 33–42, (1998)

    Google Scholar 

  • Hanavan J., Ernest P.: A mathematical model of the human body. USAF report, (1964)

    Google Scholar 

  • Hudson J.L.: Biomechanics of balance: paradigms and procedures. Proceedings of the XIIIth international symposium on biomechanics in sports, 286–289, (1996)

    Google Scholar 

  • Ikemoto L., Arikan O., Forsyth D.: Knowing when to put your foot down. I3D ’06: Proceedings of the 2006 symposium on interactive 3D graphics and games, 49–53, New York, ACM Press, (2006)

    Google Scholar 

  • Jeong K., Lee S.: Motion adaptation with self-intersection avoidance. In: Proceedings of the international workshop on human modeling and animation, 77–85, (2000)

    Google Scholar 

  • Kovar L., Schreiner J., Gleicher M.: Footskate cleanup for motion capture editing. Proceedings of the ACM symposium on computer animation, 97–104, New York, ACM Press, (2002)

    Google Scholar 

  • Kuffner J., Nishiwaki K., Kagami S., Kuniyoshi Y., Inaba M., Inoue H.: Self-collision detection and prevention for humanoid robots. In international conference on robotics and automation, 2265–2270, IEEE, (2002)

    Google Scholar 

  • Lee J., Shin S.Y.: A hierarchical approach to interactive motion editing for human-like figures. In: Proceedings of SIGGRAPH 1999, Computer graphics proceedings, Annual conference series, 39–48, ACM, ACM Press/ACM SIGGRAPH, New York, (1999)

    Google Scholar 

  • Liu K.C., Hertzmann A., Popovic Z.: Composition of complex optimal multi-character motions. SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on computer animation, 215–222, (2006)

    Google Scholar 

  • Magnenat-Thalmann N., Laperrière R., Thalmann D.: Joint-dependent local deformations for hand animation and object grasping. Proceedings on graphics interface ’88, 26–33, Toronto, ON, (1988)

    Google Scholar 

  • Müller M., Heidelberger B., Hennix M., Ratcliff J.: Position based dynamics. J Vis Cmun Image Represent, 18(2):109–118, (2007)

    Article  Google Scholar 

  • Nickalls R.W.D.: A new approach to solving the cubic: cardan’s solution revealed. Math Gazette, 77:354–359, (1993)

    Article  Google Scholar 

  • Peinado M., Boulic R., Le Callennec B., Meziat D.: Progressive cartesian inequality constraints for the inverse kinematics control of articulated chains. In Eurographics, short presentation session, 93–96, Eurographics Association, (2005)

    Google Scholar 

  • Peinado M., Meziat D., Raunhardt D., Boulic R.: Environment-aware postural control of virtual humans for real-time applications. In of the SAE conference on digital human modeling for design and engineering, (2006)

    Google Scholar 

  • Peinado M., Meziat D., Maupu D., Raunhardt D., Thalmann D., Boulic R.: Accurate on-line avatar control with collision anticipation. In VRST ’07: Proceedings of the 2007 ACM symposium on virtual reality software and technology, 89–97, New York, ACM Press, (2007)

    Google Scholar 

  • Ponder M., Papagiannakis G., Molet T., Magnenat-Thalmann N., Thalmann D.: VHD++ development framework: towards extendible, component based VR/AR simulation engine featuring advanced virtual character technologies, Proceedings of computer graphics international (CGI), IEEE Computer Society Press, (2003)

    Google Scholar 

  • Popovic Z.: Controlling physics in realistic character animation. Commun ACM, 43(7):50–58, (2000)

    Article  Google Scholar 

  • Popovic Z., Witkin A.: Motion warping. In: Proceedings of SIGGRAPH 1995, Computer graphics proceedings, Annual conference series, New York, ACM, ACMPress/ACMSIGGRAPH, (1995)

    Google Scholar 

  • Popovic Z., Witkin A.: Physically based motion transformation. In: Proceedings of SIGGRAPH 1999, Computer graphics proceedings, Annual conference series, 11–20, New York, ACM, ACM Press/ACM SIGGRAPH, (1999)

    Google Scholar 

  • Press W.H., Flannery B.P., Tukolsky S.A., Vetterling W.T.: Numerical recipes in C: the art of scientific computing (2nd edn). Cambridge University Press, (1992)

    Google Scholar 

  • Seo H., Magnenat-Thalmann N.: An automatic modeling of human bodies from sizing parameters. ACM SIGGRAPH 2003 symposium on interactive 3D graphics, 19–26, ACM Press, (2003)

    Google Scholar 

  • Shin H.J., Kovar L., Gleicher M.: Physical touch-up of human motions. In: Proceedings of the pacific conference on computer graphics and applications, p. 194, IEEE Computer Society, Wiley-IEEE Computer Society Press, (2003)

    Google Scholar 

  • Tak S., Ko H.S.: A physically-based motion retargeting filter. ACM Trans Graph, 24(1):98–117, (2005)

    Article  Google Scholar 

  • The VR Juggler-Open Source Virtual Reality Tools. http://www.vrjuggler.org/. Accessed April 2008 (2008)

  • Tolani D., Goswami A., Badler N.I.: Real-time inverse kinematics techniques for anthropomorphic limbs. Graph Model, 62:353–388, (2000)

    Article  MATH  Google Scholar 

  • Vukobratovic M., Borovac B.: Zero-moment point – thirty five years of its life. Int J Human Robot, 1(1):157–173, World Scientific Publishing, (2004)

    Article  Google Scholar 

  • Witkin A., Kass M.: Spacetime constraints. In: Proceedings of SIGGRAPH 1988, Computer graphics proceedings, Annual conference series. ACM, ACM Press/ACM SIGGRAPH, 159–168, New York, (1988)

    Google Scholar 

  • Zhao X., Badler N.: Interactive body awareness. Comput-Aid Design, 26(12):861–866, Elsevier Science, (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Magnenat-Thalmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Magnenat-Thalmann, N. (2010). Character Based Adaptation. In: Magnenat-Thalmann, N. (eds) Modeling and Simulating Bodies and Garments. Springer, London. https://doi.org/10.1007/978-1-84996-263-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-263-6_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-262-9

  • Online ISBN: 978-1-84996-263-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics