Skip to main content

Compliant Control of Whole-body Multi-contact Behaviors in Humanoid Robots

  • Chapter
Motion Planning for Humanoid Robots

Abstract

In 2008, the US National Intelligence Council published a report listing six disruptive technologies by the year 2025. It included subjects in biology, energy, robotics, and information technology. On the subject of robotics, it reports: “Robots have the potential to replace humans in a variety of applications with far-reaching implications. [...]. The development and implementation of robots for elder-care applications, and the development of human-augmentation technologies, mean that robots could be working alongside humans in looking after and rehabilitating people”. In this spirit, we explore here a methodology to enable greater maneuverability and interactivity of robots in human environments (Figure 2.1).

As the expectation of humanoid robots to operate as human helpers and social companions grows, the need to improve their motor skills becomes increasingly important. Equipped with highly dexterous anthropomorphic systems, sensors for environmental awareness, and powerful computers, humanoids should be capable of handling many basic chores that humans do. Yet they cannot, not to the level that would make them practical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.O. Alford and S.M. Belyeu. Coordinated control of two robot arms. In: proceedings of the IEEE international conference on robotics and automation, pp 468–473, March 1984.

    Google Scholar 

  2. T. Bretl and S. Lall. Testing static equilibrium for legged robots. IEEE Trans Robotics, 24(4):794–807, August 2008.

    Article  Google Scholar 

  3. O. Brock and O. Khatib. Elastic strips: A framework for motion generation in human environments. Int J Robotics Res, 21(12):1031–1052, 2002.

    Article  Google Scholar 

  4. R. Brooks. A robust layered control system for a mobile robot. Int J Robotics Automat, 2(1):14–23, March 1986.

    Google Scholar 

  5. J. Buchli, F. Iida, and A.J. Ijspeert. Finding resonance: Adaptive frequency oscillators for dynamic legged locomotion. In: proceedings of the IEEE/RSJ international conference on intelligent robots and systems, 2006.

    Google Scholar 

  6. C.E. Buckley. The application of continuum methods to path planning. PhD thesis, Stanford University, Stanford, USA, 1986.

    Google Scholar 

  7. K.C. Chang and O. Khatib. Operational space dynamics: Efficient algorithms for modeling and control of branching mechanisms. In: proceedings of the IEEE international conference on robotics and automation, April 2000.

    Google Scholar 

  8. R. Chatila. Systeme de Navigation pour un Robot Mobile Autonome: Modelisation et Processus Decisionnels. PhD thesis, Universite Paul Sabatier, Toulouse, France, 1981.

    Google Scholar 

  9. C. Collette, A. Micaelli, C. Andriot, and P. Lemerle. Robust balance optimization control of humanoid robots with multiple non coplanar grasps and frictional contacts. In: proceedings of the IEEE international conference on robotics and automation, Pasadena, USA, May 2008.

    Google Scholar 

  10. S. Collins, A. Ruina, R. Tedrake, and M. Wisse. Efficient bipedal robots based on passivedynamic walkers. Science Magazine, 307(5712):1082–1085, 2005.

    Google Scholar 

  11. E. Demircan, L. Sentis, V. DeSapio, and O. Khatib. Human motion reconstruction by direct control of marker trajectories. In: Advances in robot kinematics (ARK), 11th international symposium, Batz-sur-Mer, France, June 2008. Springer.

    Google Scholar 

  12. B. Espiau, F. Chaumette, and P. Rives. A new approach to visual servoing in robotics. IEEE Trans Robotics Automat, 8(3):313–326, 1992.

    Article  Google Scholar 

  13. R. Featherstone. Robot Dynamics Algorithms. Kluwer Academic Publishers, Norwell, USA, 1987.

    Google Scholar 

  14. E.F. Fichter and E.D. McDowell. A nover design for a robot arm. In: Advancements of Computer Technology, pp 250–256. ASME, 1980.

    Google Scholar 

  15. A.A. Frank. Control Systems for Legged Locmotion Machines. PhD thesis, University of Southern California, Los Angeles, USA, 1968.

    Google Scholar 

  16. H. Hanafusa, T. Yoshikawa, and Y. Nakamura. Analysis and control of articulated robot with redundancy. In: proceedings of IFAC symposium on robot control, volume 4, pp 1927–1932, 1981.

    Google Scholar 

  17. K. Harada, S. Kajita, K. Kaneko, and H. Hirukawa. Zmp analysis for arm/leg coordination. In: proceedings of the IEEE/RSJ international conference on intelligent robots and systems, pp 75–81, Las Vegas, USA, October 2003.

    Google Scholar 

  18. K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka. The development of Honda humanoid robot. In: proceedings of the IEEE international conference on robotics and automation, volume 2, pp 1321–1326, Leuven, Belgium, 1998.

    Google Scholar 

  19. R. Holmberg and O. Khatib. Development and control of a holonomic mobile robot for mobile manipulation tasks. Int J Robotics Res, 19(11):1066–1074, 2000.

    Article  Google Scholar 

  20. S-H. Hyon, J. Hale, and G. Cheng. Full-body compliant humanhumanoid interaction: Balancing in the presence of unknown external forces. IEEE Trans Robotics, 23(5):884–898, October 2007.

    Article  Google Scholar 

  21. A.J. Ijspeert, J. Buchli, A. Selverston, M. Rabinovich, M. Hasler, W. Gerstner, A. Billard, H. Markram, and D. Floreano, editors. Dynamical principles for neuroscience and intelligent biomimetic devices. Abstracts of the EPFL-LATSIS symposium, Laussane, Switzerland, 2006.

    Google Scholar 

  22. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa. Resolved momentum control: Humanoid motion planning based on the linear and angular momentum. In: proceedings of the IEEE/RSJ international conference on intelligent robots and systems, pp 1644–1650, Las Vegas, USA, October 2003.

    Google Scholar 

  23. F. Kanehiro and H. Hirukawa. Online self-collision checking for humanoids. In: proceedings of the 19th annual conference of the robotics Society of Japan, Tokyo, Japan, September 2001.

    Google Scholar 

  24. O. Khatib. Commande Dynamique dans l’Espace Opérationnel des Robots Manipulateurs en Présence d’Obstacles. PhD thesis, l’École Nationale Supérieure de l’Aéronautique et de l’Espace, Toulouse, France, 1980.

    Google Scholar 

  25. O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. Int J Robotics Res, 5(1):90–98, 1986.

    Article  MathSciNet  Google Scholar 

  26. O. Khatib. A unified approach for motion and force control of robot manipulators: The operational space formulation. Int J Robotics Res, 3(1):43–53, 1987.

    Google Scholar 

  27. O. Khatib. Object manipulation in a multi-effector robot system. In R. Bolles and B. Roth, editors, Robotics Research 4, pp 137–144. MIT Press, 1988.

    Google Scholar 

  28. O. Khatib, O. Brock, K.C. Chang, F. Conti, D. Ruspini, and L. Sentis. Robotics and interactive simulation. Communications of the ACM, 45(3):46–51, March 2002.

    Article  Google Scholar 

  29. O. Khatib, L. Sentis, J.H. Park, and J. Warren. Whole body dynamic behavior and control of human-like robots. Int J Humanoid Robotics, 1(1):29–43, March 2004.

    Article  Google Scholar 

  30. O. Khatib, P. Thaulaud, and J. Park. Torque-position transformer for task control of position controlled robots. Patent, November 2006. Patent Number: 20060250101.

    Google Scholar 

  31. B.H. Krogh. A generalized potential field approach to obstacle avoidance control. In: Proceeding of the Internatioal robotics research conference, Betlehem, USA, August 1984.

    Google Scholar 

  32. J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Motion planning for humanoid robots. In: proceedings of the international symposium of robotics Research, Siena, Italy, October 2003.

    Google Scholar 

  33. J. Kuffner, K. Nishiwaki, S. Kagami, Y. Kuniyoshil, M. Inabal, and H. Inouel. Self-collision detection and prevention for humanoid robots. In: proceedings of the IEEE international conference on robotics and automation, pp 2265–2270, Washington, USA, May 2002.

    Google Scholar 

  34. J.C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, USA, 1991.

    Google Scholar 

  35. J.P. Laumond and P.E. Jacobs. A motion planner for nonholonomic mobile robots. IEEE Trans Robotics Automat, 10(5):577–593, 1994.

    Article  Google Scholar 

  36. A. Liegeois. Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Trans Syst Man Cybern, 7:868–871, 1977.

    Article  MATH  Google Scholar 

  37. T. Lozano-Perez. Spatial planning: a configuration space approach. IEEE Trans Comput, 32(2):108–120, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  38. A.A. Maciejewski and C.A. Klein. Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments. Int J Robotics Res, 4(3):109–117, 1985.

    Article  Google Scholar 

  39. N. Mansard and O. Khatib. Continous control law from unilateral constraints. In: proceedings of the IEEE international conference on robotics and automation, Pasadena, USA, May 2008.

    Google Scholar 

  40. E. Marchand and G. Hager. Dynamic sensor planning in visual servoing. In: proceedings of the IEEE/RSJ international conference on intelligent robots and systems, volume 3, pp 1988–1993, Leuven, Belgium, May 1998.

    Google Scholar 

  41. T. McGeer. Passive dynamic walking. The Int J Robotics Res, 9(2):62–68, 1990.

    Article  Google Scholar 

  42. J.-P Merlet. Redundant parallel manipulators,. Laboratory of Robotics and Automation, 8(1):17–24, February 1996.

    Article  Google Scholar 

  43. H. Moravec. Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover. PhD thesis, Stanford University, Stanford, USA, 1980.

    Google Scholar 

  44. Y. Nakamura, H. Hanafusa, and T. Yoshikawa. Mechanics of coordinative manipulation by multiple robotic mechanisms. In: proceedings of the IEEE international conference on robotics and automation, pp 991–998, April 1987.

    Google Scholar 

  45. K. Abderrahmane and A. Escande. Challenges in Contact-Support Planning for Acyclic Motion of Humanoids and Androids. In: international symposium on robotics, pp 740–745, 2008.

    Google Scholar 

  46. R. Philippsen, N. Negati, and L. Sentis. Bridging the gap between semantic planning and continuous control for mobile manipulation using a graph-based world representation. In: proceedings of the workshop on hybrid control of autonomous systems, Pasadena, July 2009.

    Google Scholar 

  47. D.L. Pieper. The Kinematics of Manipulators Under Computer Control. PhD thesis, Stanford University, Stanford, USA, 1968.

    Google Scholar 

  48. M.H. Raibert, M. Chepponis, and H.B. Brown. Running on four legs as though they were one. IEEE J Robotics Automat, 2(2):70–82, June 1986.

    Google Scholar 

  49. M.H. Raibert and J.J. Craig. Hybrid position force control of manipulators. ASME J Dyn Sys Measurement Contr, 103(2):126–133, 1981.

    Article  Google Scholar 

  50. B. Roth, J. Rastegar, and V. Sheinmann. On the design of computer controlled manipulators. In: First CISM IFToMM symposium, pp 93–113, 1973.

    Google Scholar 

  51. D. Ruspini and O. Khatib. Collision/contact models for dynamic simulation and haptic interaction. In: The 9th international symposium of robotics research (ISRR’99), pp 185–195, Snowbird, USA, October 1999.

    Google Scholar 

  52. L. Sentis. Synthesis and Control of Whole-body Behaviors in Humanoid Systems. PhD thesis, Stanford University, Stanford, USA, 2007.

    Google Scholar 

  53. L. Sentis and O. Khatib. Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. Int J Humanoid Robotics, 2(4):505–518, December 2005.

    Article  Google Scholar 

  54. L. Sentis, J. Park, and O. Khatib. Modeling and control of multi-contact centers of pressure and internal forces in humanoid robots. In: proceedings of the IEEE/RSJ international conference on intelligent robots and systems, St. Louis, USA, October 2009.

    Google Scholar 

  55. B. Siciliano and J. Slotine. A general framework for managing multiple tasks in highly redundant robotic systems. In: proceedings of the IEEE international conference on advanced robotics, pp 1211–1216, Pisa, Italy, June 1991.

    Google Scholar 

  56. O. Stasse, A. Escande, N. Mansard, S. Misossec, P. Evrard, and A. Kheddar. Real-time (self)-collision avoidance task on a hrp-2 humanoid robot. In: proceedings of the IEEE international conference on robotics and automation, pp 3200–3205, Pasadena, May 2008.

    Google Scholar 

  57. A. Takanishi, M. Ishida, Y. Yamazaki, and I. Kato. The realization of dynamic walking robot wl-10rd. In: proceedings of the international conference of advanced robotics, 1985.

    Google Scholar 

  58. A. Takanishi, H.O. Lim, M. Tsuda, and I. Kato. Realization of dynamic biped walking stabilized by trunk motion on sagitally uneven surface. In: proceedings of the IEEE/RSJ international conference on intelligent robots and systems, 1990.

    Google Scholar 

  59. R. Tedrake, T.W. Zhang, M. Fong, and H.S. Seung. Actuating a simple 3d passive dynamic walker. In: proceedings of the IEEE international conference on robotics and automation, 2004.

    Google Scholar 

  60. M. Vukobratovi´c and B. Borovac. Zero-moment point thirty tive years of its life. Int J Humanoid Robotics, 1(1):157–173, 2004.

    Article  Google Scholar 

  61. J. T. Wen and L. Wilfinger. Kinematic manipulability of general constrained rigid multibody systems. In: proceedings of the IEEE international conference on robotics and automation, volume 15, pp 558–567, Detroit, USA, May 1999.

    Google Scholar 

  62. E.R. Westervelt, J.W. Grizzle, C. Chevallereau, J.H. Choi, and B. Morris. Feebdack control of dynamic bipedal robt locomotion. CRC Oress, 2007.

    Google Scholar 

  63. D. Williams and O. Khatib. The virtual linkage: A model for internal forces in multi-grasp manipulation. In: proceedings of the IEEE international conference on robotics and automation, pp 1025–1030, Atlanta, USA, October 1993.

    Google Scholar 

  64. K. Yamane and Y. Nakamura. Dynamics filterconcept and implementation of online motion generator for human figures. IEEE Trans Robotics Automat, 19(3):421–432, 2003.

    Article  Google Scholar 

  65. Y. Yi, J. McInroy, and Y. Chen. General over-constrained rigid multi-body systems: Differential kinematics, and fault tolerance. In: proceedings of the SPIE international symposium on smart structures and materials, volume 4701, pp 189–199, San Diego, USA, March 2002.

    Google Scholar 

  66. T. Yoshikawa and O. Khatib. Compliant and safe motion control of a humanoid robot in contact with the environment and humans. In: proceedings of the IEEE/RSJ international conference on intelligent robots and systems, Nice, Frane, September 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Sentis, L. (2010). Compliant Control of Whole-body Multi-contact Behaviors in Humanoid Robots. In: Harada, K., Yoshida, E., Yokoi, K. (eds) Motion Planning for Humanoid Robots. Springer, London. https://doi.org/10.1007/978-1-84996-220-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-220-9_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-219-3

  • Online ISBN: 978-1-84996-220-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics