Skip to main content

A Motion Planning Framework for Skill Coordination and Learning

  • Chapter
Motion Planning for Humanoid Robots
  • 2153 Accesses

Abstract

Coordinated whole-body motions are key for achieving the full potential of humanoids performing tasks in human environments and in cooperation with humans. We present a multi-skill motion planning and learning framework which is able to address several complex whole-body coordinations and as well detection and imitation of motion constraints. The framework is composed of three main parts: first, a minimal set of basic motion skills is defined in order to achieve basic stepping, balance and reaching capabilities. A multi-skill motion planner is then developed for coordinating motion skills in order to solve generic mobile manipulation tasks. Finally, learning strategies are presented for improving skill execution and for learning constraints from imitation. The framework is able to coordinate basic skills in order to solve complex whole-body humanoid tasks and also integrates learning mechanisms for achieving humanlike performances in realistic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. A. Arbib. Perceptual structures and distributed motor control. In: V. B. Brooks, editor, Handbook of Physiology, Section 2: The Nervous System Vol. II, Motor Control, Part 1, pp 1449–1480. American Physiological Society, Bethesda, MD, 1981.

    Google Scholar 

  2. P. Baerlocher. Inverse kinematics techniques for the interactive posture control of articulated figures. PhD thesis, Swiss Federal Institute of Technology, EPFL, 2001. Thesis number 2383.

    Google Scholar 

  3. P. Baerlocher and R. Boulic. Parametrization and range of motion of the ball-and-socket joint. In: proceedings of the AVATARS conference, Lausanne, Switzerland, 2000.

    Google Scholar 

  4. D. Bertram, J. Kuffner, R. Dillmann, and T. Asfour. An integrated approach to inverse kinematics and path planning for redundant manipulators. In: proceedings of the IEEE international conference on robotics and automation, pp 1874–1879. IEEE, May 2006.

    Google Scholar 

  5. A. Billard and M. J. Matari´c. Learning human arm movements by imitation: Evaluation of a biologically inspired connectionist architecture. Robotics Autonomous Syst, 37(2-3), pp 145–160, November, 30 2001.

    Article  MATH  Google Scholar 

  6. C. Breazeal, A. Brooks, D. Chilongo, J. Gray, G. Hoffman, C. Kidd, H. Lee, J. Lieberman, and A. Lockerd. Working collaboratively with humanoid robots. In: proceedings of humanoids, Los Angeles, CA, 2004.

    Google Scholar 

  7. C. Breazeal, D. Buchsbaum, J. Gray, D. Gatenby, and D. Blumberg. Learning from and about others: Towards using imitation to bootstrap the social understanding of others by robots. Artif Life, 11(1–2), 2005.

    Google Scholar 

  8. T. Bretl. Motion planning of multi-limbed robots subject to equilibrium constraints: The free-climbing robot problem. Int J Robotics Res, 25(4), pp 317–342, 2006. ISSN 0278-3649.

    Article  Google Scholar 

  9. B. Burns and O. Brock. Sampling-based motion planning using predictive models. In: proceedings of the IEEE international conference on robotics and automation (ICRA), pp 3120–3125, Marina del Rey, CA, April 18-22 2005.

    Google Scholar 

  10. S. R. Buss and J.-S. Kim. Selectively damped least squares for inverse kinematics. J Graphics Tools, 10(3), pp 37–49, 2005.

    Google Scholar 

  11. J. Chestnutt, M. Lau, K. M. Cheung, J. Kuffner, J. K. Hodgins, and T. Kanade. Footstep planning for the honda asimo humanoid. In: proceedings of the IEEE international conference on robotics and automation, April 2005.

    Google Scholar 

  12. J. Chestnutt, K. Nishiwaki, J. Kuffner, and S. Kagami. An adaptive action model for legged navigation planning. In: proceedings of the IEEE-RAS international conference on humanoid robotics (Humanoids), 2007.

    Google Scholar 

  13. B. Dariush, M. Gienger, B. Jian, C. Goerick, and K. Fujimura. whole body humanoid control from human descriptors. In: proceedings of the international conference on robotics and Automation (ICRA), pp 3677–2684, May 19–23 2008.

    Google Scholar 

  14. J. Decety. Do imagined and executed actions share the same neural substrate? Cognitive Brain Res, 3, pp 87–93, 1996.

    Article  Google Scholar 

  15. R. Diankov and J. Kuffner. randomized statistical path planning. In: proceedings of the international conference on robotics and automation (ICRA), pp 1–6, May 19-23 2008.

    Google Scholar 

  16. M. A. Diftler and R. O. Ambrose. Robonaut, a robotic astronaut assistant. In: international symposium on Artificial Intelligence, robotics and automation in space (ISAIRAS), Montreal Canada, June, 18 2001.

    Google Scholar 

  17. E. Drumwright and V. Ng-Thow-Hing. Toward interactive reaching in static environments for humanoid robots. In: proceedings of the IEEE international conference on intelligent robots and systems (IROS), Beijing, China, October 2006.

    Google Scholar 

  18. C. Esteves, G. Arechavaleta, J. Pettré, and J.-P. Laumond. Animation planning for virtual characters cooperation. ACM Trans Graphics, 25(2), pp 319–339, 2006.

    Article  Google Scholar 

  19. P. Faloutsos, M. van de Panne, and D. Terzopoulos. Composable controllers for physicsbased character animation. In: proceedings of SIGGRAPH, pp 251–260, New York, NY, USA, 2001. ACM Press. ISBN 1-58113-374-X.

    Google Scholar 

  20. S. F. Giszter, F. A. Mussa-Ivaldi, and E. Bizzi. Convergent force fields organized in the frog’s spinal cord. J Neurosci, 13(2), pp 467–491, 1993.

    Google Scholar 

  21. A. Goldman and V. Gallese. Mirror neurons and the simulation theory of mind-reading. Trends Cognitive Sci, 2(12), pp 493–501, 1998.

    Article  Google Scholar 

  22. S. Grassia. Practical parameterization of rotations using the exponential map. J Graphics Tools, 3(3), pp 29–48, 1998.

    Google Scholar 

  23. D. B. Grimes, D. R. Rashid, and R. P. N. Rao. Learning nonparametric models for probabilistic imitation. In: Neural Information Processing Systems (NIPS), pp 521–528.

    Google Scholar 

  24. H. Hauser, G. Neumann, A. J. Ijspeert, and W. Maass. Biologically inspired kinematic synergies provide a new paradigm for balance control of humanoid robots. In: proceedings of the IEEE-RAS international conference on humanoid robotics (Humanoids), 2007.

    Google Scholar 

  25. K. Hauser, T. Bretl, K. Harada, and J. Latombe. Using motion primitives in probabilistic sample-based planning for humanoid robots. In: workshop on algorithmic foundations of robotics (WAFR), pp 2641–2648, July 2006.

    Google Scholar 

  26. K. Hauser, T. Bretl, and J. Latombe. Non-gaited humanoid locomotion planning. In: proceedings of the IEEE-RAS international conference on humanoid robotics (Humanoids), pp 2641–2648, December 2005.

    Google Scholar 

  27. K. Hauser, V. Ng-Thowhing, Gonzalez-Baos, H. T. Mukai, and S. Kuriyama. Multi-modal motion planning for a humanoid robot manipulation task. In: international symposium on robotics research (ISRR), 2007.

    Google Scholar 

  28. J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F. O’Brien. Animating human athletics. In: proceedings of ACM SIGGRAPH, pp 71–78, New York, NY, USA, 1995. ACM Press.

    Google Scholar 

  29. X. Jiang and M. Kallmann. Learning humanoid reaching tasks in dynamic environments. In: proceedings of the IEEE international conference on intelligent robots and systems (IROS), San Diego CA, 2007.

    Google Scholar 

  30. S. Kagami, J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Humanoid arm motion planning using stereo vision and rrt search. J Robotics Mechatronics, April 2003.

    Google Scholar 

  31. M. Kallmann. Scalable solutions for interactive virtual humans that can manipulate objects. In: proceedings of the artificial intelligence and interactive digital entertainment (AI-IDE’05), pp 69–74, Marina del Rey, CA, June 1–3 2005.

    Google Scholar 

  32. M. Kallmann. Analytical inverse kinematics with body posture control. Computer Animation and Virtual Worlds, 19(2), pp 79–91, 2008.

    Article  Google Scholar 

  33. M. Kallmann, A. Aubel, T. Abaci, and D. Thalmann. Planning collision-free reaching motions for interactive object manipulation and grasping. Computer graphics Forum (proceedings of eurographics’03), 22(3), pp 313–322, September 2003.

    Google Scholar 

  34. M. Kallmann, R. Bargmann, and M. J. Matari´c. Planning the sequencing of movement primitives. In: proceedings of the international conference on simulation of adaptive behavior (SAB), pp 193–200, Santa Monica, CA, July 2004.

    Google Scholar 

  35. L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars. Probabilistic roadmaps for fast path planning in high-dimensional configuration spaces. IEEE Trans Robotics Automat, 12, pp 566–580, 1996.

    Article  Google Scholar 

  36. C. A. Klein and C.-H. Huang. Review of pseudoinverse control for use with kinematically redundant manipulators. IEEE Trans Syst Man Cybern, SMC-13(3), pp 245–250, March-April 1983.

    Google Scholar 

  37. S. Koenig. A comparison of fast search methods for real-time situated agents. In: proceedings of the international joint conference on autonomous agents and multiagent systems (AAMAS), pp 864–871, 2004.

    Google Scholar 

  38. S. Koenig and M. Likhachev. Real-time adaptive a*. In: proceedings of the international joint conference on autonomous agents and multiagent systems (AAMAS), pp 281–288, 2006.

    Google Scholar 

  39. Y. Koga, K. Kondo, J. J. Kuffner, and J.-C. Latombe. Planning motions with intentions. In: proceedings of SIGGRAPH, pp 395–408. ACM Press, 1994. ISBN 0-89791-667-0.

    Google Scholar 

  40. J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Motion planning for humanoid robots. In: proceedings of the 11th international symposium of robotics research (ISRR), November 2003.

    Google Scholar 

  41. J. J. Kuffner and S. M. LaValle. RRT-Connect: An efficient approach to single-query path planning. In: proceedings of IEEE international conference on robotics and automation (ICRA), San Francisco, CA, April 2000.

    Google Scholar 

  42. K. Kurashige, T. Fukuda, and H. Hoshino. Motion planning based on hierarchical knowledge for a six legged locomotion robot. In: proceedings of IEEE international conference on systems, man, and cybernetics, vol. 6, pp 924–929, 1999.

    Google Scholar 

  43. J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publisher, December 1990.

    Google Scholar 

  44. J.-P. P. Laumond. Robot Motion Planning and Control. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1998.

    Google Scholar 

  45. S. LaValle. Rapidly-exploring random trees: A new tool for path planning. Technical Report 98-11, Iowa State University, Computer Science Department, October 1998.

    Google Scholar 

  46. S. M. LaValle. Planning Algorithms. Cambridge University Press (available on-line), 2006. URL msl.cs.uiuc.edu/planning/.

    Google Scholar 

  47. M. Likhachev, G. J. Gordon, and S. Thrun. Ara*: Anytime a* with provable bounds on suboptimality. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.

    Google Scholar 

  48. V. Manikonda, P. Krishnaprasad, and J. Hendler. A motion description language and hybrid architecure for motion planning with nonholonomic robots. In: proceedings of IEEE international conference on robotics and automation (ICRA), May 1995.

    Google Scholar 

  49. M. J. Matari´c. Socially assistive robotics. IEEE Intelligent Systems, August 2006.

    Google Scholar 

  50. J. McCann and N. S. Pollard. Responsive characters from motion fragments. ACM Trans Graphics (SIGGRAPH 2007), 26(3), Aug. 2007.

    Google Scholar 

  51. M. Morales, L. Tapia, R. Pearce, S. Rodriguez, and N. Amato. A machine learning approach for feature-sensitive motion planning. In: proceedings of the workshop on the algorithmic foundations of robotics, 2004.

    Google Scholar 

  52. V. T. Nguyen, A. Martinelli, N. Tomatis, and R. Siegwart. A comparison of line extraction algorithms using 2d laser rangefinder for indoor mobile robotics. In: international conference on intelligent robots and systems (IROS05), Edmonton, Canada, 2005.

    Google Scholar 

  53. M. N. Nicolescu and M. J. Matari´c. Natural methods for robots task learning: Instructive demonstration, generalization and practice. In: proceedings of the 2nd international joint conference on autonomous agents and multi-agent systems (AAMAS), Melbourne, Australia, 2003.

    Google Scholar 

  54. A. Olenderski, M. Nicolescu, and S. Louis. Robot learning by demonstration using forward models of schema-based behaviors. In: proceedings of international conference on informatics in control, automation and robotics, pp 14–17, Barcelona, Spain, September 2005.

    Google Scholar 

  55. J. Pettré, M. Kallmann, M. C. Lin, J. Kuffner, M. Gleicher, C. Esteves, and J.-P. Laumond. Motion planning and autonomy for virtual humans. In: SIGGRAPH’08 Class Notes, 2008.

    Google Scholar 

  56. A. Ramesh and M. J. Matari´c. Learning movement sequences from demonstration. In: proceedings of the international conference on development and learning (ICDL), pp 302–306, MIT, Cambridge, MA, 2002.

    Google Scholar 

  57. S. Schaal. Arm and hand movement control. In M. Arbib, editor, The handbook of brain theory and neural networks, pp 110–113. The MIT Press, second edition, 2002.

    Google Scholar 

  58. S. Schaal, A. Ijspeert, and A. Billard. Computational approaches to motor learning by imitation. The Neuroscience of Social Interaction, 1431, pp 199–218, 2003.

    Google Scholar 

  59. L. Sentis and O. Khatib. A whole-body control framework for humanoids operating in human environments. In: proceedings of the international conference on Robotics and automation (ICRA), pp 2641–2648, May 15–19 2006.

    Google Scholar 

  60. A. Shapiro, M. Kallmann, and P. Faloutsos. Interactive motion correction and object manipulation. In: ACM SIGGRAPH symposium on interactive 3D graphics and games (I3D), Seattle, April 30 - May 2 2007.

    Google Scholar 

  61. A. Siadat, A. Kaske, S. Klausmann, M. Dufaut, and R. Husson. An optimized segmentation method for a 2d laser-scanner applied to mobile robot navigation. In: proceedings of the 3rd IFAC symposium on intelligent components and instruments for control applications, 1997.

    Google Scholar 

  62. W. Suleiman, E. Yoshida, F. Kanehiro, J.-P. Laumond, and A. Monin. on human motion imitation by humanoid robot. In: proceedings of the international conference on robotics and automation (ICRA), pp 2697–2704, May 19–23 2008.

    Google Scholar 

  63. K. A. Thoroughman and R. Shadmehr. Learning of action through combination of motor primitives. Nature, 407, pp 742–747, 2000.

    Article  Google Scholar 

  64. A. Treuille, Y. Lee, and Z. Popovi´c. Near-optimal character animation with continuous control. In: proceedings of ACM SIGGRAPH. ACM Press, 2007.

    Google Scholar 

  65. L. C. T. Wang and C. C. Chen. A combined optimization method for solving the inverse kinematics problems of mechanical manipulators. IEEE Trans Robotics Automat, 7(4), pp 489–499, 1991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Kallmann, M., Jiang, X. (2010). A Motion Planning Framework for Skill Coordination and Learning. In: Harada, K., Yoshida, E., Yokoi, K. (eds) Motion Planning for Humanoid Robots. Springer, London. https://doi.org/10.1007/978-1-84996-220-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-220-9_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-219-3

  • Online ISBN: 978-1-84996-220-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics