Skip to main content

RNA Secondary Structure Prediction and Gene Regulation by Small RNAs

  • Chapter
Frontiers in Computational and Systems Biology

Part of the book series: Computational Biology ((COBO,volume 15))

  • 1492 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Ambros. The functions of animal microRNAs. Nature, 431(7006):350–355, 2004.

    Article  Google Scholar 

  2. S.L. Ameres, J. Martinez, and R. Schroeder. Molecular basis for target RNA recognition and cleavage by human RISC. Cell, 130(1):101–112, 2007.

    Article  Google Scholar 

  3. M. Andronescu, Z.C. Zhang, and A. Condon. Secondary structure prediction of interacting RNA molecules. J Mol Biol, 345(5):987–1001, 2005.

    Article  Google Scholar 

  4. D.P. Bartel. MicroRNAs: target recognition and regulatory functions. Cell, 136(2):215–233, 2009.

    Article  Google Scholar 

  5. A. Birmingham, E.M. Anderson, A. Reynolds, D. Ilsley-Tyree, D. Leake, Y. Fedorov, S. Baskerville, E. Maksimova, K. Robinson, J. Karpilow, W.S. Marshall, and A. Khvorova. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods, 3(3):199–204, 2006.

    Article  Google Scholar 

  6. M. Boehm and F. Slack. A developmental timing microRNA and its target regulate life span in C. elegans. Science, 310(5756):1954–1957, 2005.

    Article  Google Scholar 

  7. E.A. Bohula, A.J. Salisbury, M. Sohail, M.P. Playford, J. Riedemann, E.M. Southern, and V.M. Macaulay. The efficacy of small interfering RNAs targeted to the type 1 insulin-like growth factor receptor (IGF1R) is influenced by secondary structure in the IGF1R transcript. J Biol Chem, 278(18):15991–15997, 2003.

    Article  Google Scholar 

  8. J. Brennecke, A. Stark, R.B. Russell, and S.M. Cohen. Principles of MicroRNA-target recognition. PLoS Biol, 3(3):e85, 2005.

    Article  Google Scholar 

  9. T.R. Brummelkamp, R. Bernards, and R. Agami. A system for stable expression of short interfering RNAs in mammalian cells. Science, 296(5567):550–553, 2002.

    Article  Google Scholar 

  10. F. Buchholz, R. Kittler, M. Slabicki, and M. Theis. Enzymatically prepared RNAi libraries. Nat Methods, 3(9):696–700, 2006.

    Article  Google Scholar 

  11. G.A. Calin, M. Ferracin, A. Cimmino, G. Di Leva, M. Shimizu, S.E. Wojcik, M.V. Iorio, R. Visone, N.I. Sever, M. Fabbri, R. Iuliano, T. Palumbo, F. Pichiorri, C. Roldo, R. Garzon, C. Sevignani, L. Rassenti, H. Alder, S. Volinia, C.G. Liu, T.J. Kipps, M. Negrini, and C.M. Croce. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med, 353(17):1793–1801, 2005.

    Article  Google Scholar 

  12. L.E. Carvalho and C.E. Lawrence. Centroid estimation in discrete high-dimensional spaces with applications in biology. Proc Natl Acad Sci USA, 105(9):3209–3214, 2008.

    Article  Google Scholar 

  13. C.Y. Chan, C.E. Lawrence, and Y. Ding. Structure clustering features on the Sfold Web server. Bioinformatics, 21(20):3926–3928, 2005.

    Article  Google Scholar 

  14. C.Y. Chan, C.S. Carmack, D.D. Long, A. Maliyekkel, Y. Shao, I.B. Roninson, and Y. Ding. A structural interpretation of the effect of GC-content on efficiency of RNA interference. BMC Bioinform, 10(1):S33, 2009.

    Article  Google Scholar 

  15. P.Y. Chen, L. Weinmann, D. Gaidatzis, Y. Pei, M. Zavolan, T. Tuschl, and G. Meister. Strand-specific 5′-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity. RNA, 14(2):263–274, 2008.

    Article  Google Scholar 

  16. J.T. Chi, H.Y. Chang, N.N. Wang, D.S. Chang, N. Dunphy, and P.O. Brown. Genomewide view of gene silencing by small interfering RNAs. Proc Natl Acad Sci USA, 100(11):6343–6346, 2003.

    Article  Google Scholar 

  17. P. Clote, J. Waldispuhl, B. Behzadi, and J.M. Steyaert. Energy landscape of k-point mutants of an RNA molecule. Bioinformatics, 21(22):4140–4147, 2005.

    Article  Google Scholar 

  18. B.R. Cullen. Viruses and microRNAs. Nat Genet, 38:S25–30, 2006.

    Article  Google Scholar 

  19. J. Cupal, C. Flamm, A. Renner, and P.F. Stadler. Density of states, metastable states, and saddle points exploring the energy landscape of an RNA molecule. Proc Int Conf Intell Syst Mol Biol, 5:88–91, 1997.

    Google Scholar 

  20. D. Didiano and O. Hobert. Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nat Struct Mol Biol, 13(9):849–851, 2006.

    Article  Google Scholar 

  21. R.A. Dimitrov and M. Zuker. Prediction of hybridization and melting for double-stranded nucleic acids. Biophys J, 87(1):215–226, 2004.

    Article  Google Scholar 

  22. Y. Ding. Rational statistical design of antisense oligonucleotides for high throughput functional genomics and drug target validation. Stat Sin, 12:273–296, 2002.

    MATH  Google Scholar 

  23. Y. Ding and C.E. Lawrence. Statistical prediction of single-stranded regions in RNA secondary structure and application to predicting effective antisense target sites and beyond. Nucleic Acids Res, 29(5):1034–1046, 2001.

    Article  Google Scholar 

  24. Y. Ding and C.E. Lawrence. A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res, 31(24):7280–7301, 2003.

    Article  Google Scholar 

  25. Y. Ding and C.E. Lawrence. Rational design of siRNAs with the Sfold software. In K. Appasani, editor, RNA Interference: from Basic Science to Drug Development, pages 129–138. Cambridge University Press, Cambridge, 2005.

    Chapter  Google Scholar 

  26. Y. Ding, C.Y. Chan, and C.E. Lawrence. Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res, 32:W135–141, 2004. (Web Server issue)

    Article  Google Scholar 

  27. Y. Ding, C.Y. Chan, and C.E. Lawrence. RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble. RNA, 11(8):1157–1166, 2005.

    Article  Google Scholar 

  28. Y. Ding, C.Y. Chan, and C.E. Lawrence. Clustering of RNA secondary structures with application to messenger RNAs. J Mol Biol, 359(3):554–571, 2006.

    Article  Google Scholar 

  29. R.M. Dirks and N.A. Pierce. A partition function algorithm for nucleic acid secondary structure including pseudoknots. J Comput Chem, 24(13):1664–1677, 2003.

    Article  Google Scholar 

  30. R.M. Dirks and N.A. Pierce. An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots. J Comput Chem, 25(10):1295–1304, 2004.

    Article  Google Scholar 

  31. D.V. Dugas and B. Bartel. MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol, 7(5):512–520, 2004.

    Article  Google Scholar 

  32. C.J. Echeverri and N. Perrimon. High-throughput RNAi screening in cultured cells: a user’s guide. Nat Rev Genet, 7(5):373–384, 2006.

    Article  Google Scholar 

  33. S.M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, and T. Tuschl. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411(6836):494–498, 2001.

    Article  Google Scholar 

  34. W. Filipowicz, S.N. Bhattacharyya, and N. Sonenberg. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet, 9(2):102–114, 2008.

    Article  Google Scholar 

  35. A. Fire, S. Xu, M.K. Montgomery, S.A. Kostas, S.E. Driver, and C.C. Mello. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669):806–811, 1998.

    Article  Google Scholar 

  36. R. Giegerich, B. Voss, and M. Rehmsmeier. Abstract shapes of RNA. Nucleic Acids Res, 32(16):4843–4851, 2004.

    Article  Google Scholar 

  37. A. Grimson, K.K. Farh, W.K. Johnston, P. Garrett-Engele, L.P. Lim, and D.P. Bartel. MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol Cell, 27(1):91–105, 2007.

    Article  Google Scholar 

  38. M. Hamada, H. Kiryu, K. Sato, T. Mituyama, and K. Asai. Prediction of RNA secondary structure using generalized centroid estimators. Bioinformatics, 25(4):465–473, 2009.

    Article  Google Scholar 

  39. M. Hammell, D. Long, L. Zhang, A. Lee, C.S. Carmack, M. Han, Y. Ding, and V. Ambros. mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts. Nat Methods, 5:813–819, 2008.

    Article  Google Scholar 

  40. M.R. Hargittai, R.J. Gorelick, I. Rouzina, and K. Musier-Forsyth. Mechanistic insights into the kinetics of HIV-1 nucleocapsid protein-facilitated tRNA annealing to the primer binding site. J Mol Biol, 337(4):951–968, 2004.

    Article  Google Scholar 

  41. B.S. Heale, H.S. Soifer, C. Bowers, and J.J. Rossi. siRNA target site secondary structure predictions using local stable substructures. Nucleic Acids Res, 33(3):e30, 2005.

    Article  Google Scholar 

  42. I.L. Hofacker. Vienna RNA secondary structure server. Nucleic Acids Res, 31(13):3429–3431, 2003.

    Article  Google Scholar 

  43. T. Holen, M. Amarzguioui, M.T. Wiiger, E. Babaie, and H. Prydz. Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res, 30(8):1757–1766, 2002.

    Article  Google Scholar 

  44. J.C. Huang, B.J. Frey, and Q.D. Morris. Comparing sequence and expression for predicting microRNA targets using GenMiR3. In Pacific Symposium on Biocomputing, volume 13, pages 52–63, 2008.

    Google Scholar 

  45. A.L. Jackson, S.R. Bartz, J. Schelter, S.V. Kobayashi, J. Burchard, M. Mao, B. Li, G. Cavet, and P.S. Linsley. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol, 21(6):635–637, 2003.

    Article  Google Scholar 

  46. A.L. Jackson, J. Burchard, D. Leake, A. Reynolds, J. Schelter, J. Guo, J.M. Johnson, L. Lim, J. Karpilow, K. Nichols, W. Marshall, A. Khvorova, and P.S. Linsley. Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA, 12(7):1197–1205, 2006.

    Article  Google Scholar 

  47. A.L. Jackson, J. Burchard, J. Schelter, B.N. Chau, M. Cleary, L. Lim, and P.S. Linsley. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA, 12(7):1179–1187, 2006.

    Article  Google Scholar 

  48. M. Kertesz, N. Iovino, U. Unnerstall, U. Gaul, and E. Segal. The role of site accessibility in microRNA target recognition. Nat Genet, 39(10):1278–1284, 2007.

    Article  Google Scholar 

  49. A. Khvorova, A. Reynolds, and S.D. Jayasena. Functional siRNAs and miRNAs exhibit strand bias. Cell, 115(2):209–216, 2003.

    Article  Google Scholar 

  50. R. Kretschmer-Kazemi Far and G. Sczakiel. The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acids Res, 31(15):4417–4424, 2003.

    Article  Google Scholar 

  51. I. Ladunga. More complete gene silencing by fewer siRNAs: transparent optimized design and biophysical signature. Nucleic Acids Res, 35(2):433–440, 2007.

    Article  Google Scholar 

  52. E.C. Lai. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet, 30(4):363–364, 2002.

    Article  Google Scholar 

  53. D.M. Layton and R. Bundschuh. A statistical analysis of RNA folding algorithms through thermodynamic parameter perturbation. Nucleic Acids Res, 33(2):519–524, 2005.

    Article  Google Scholar 

  54. N.S. Lee, T. Dohjima, G. Bauer, H. Li, M.J. Li, A. Ehsani, P. Salvaterra, and J. Rossi. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol, 20(5):500–505, 2002.

    Google Scholar 

  55. I. Lee, S.S. Ajay, J.I. Yook, H.S. Kim, S.H. Hong, N.H. Kim, S.M. Dhanasekaran, A. Chinnaiyan, and B.D. Athey. New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites. Genome Res, 2009.

    Google Scholar 

  56. B.P. Lewis, I.H. Shih, M.W. Jones-Rhoades, D.P. Bartel, and C.B. Burge. Prediction of mammalian microRNA targets. Cell, 115(7):787–798, 2003.

    Article  Google Scholar 

  57. B.P. Lewis, C.B. Burge, and D.P. Bartel. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1):15–20, 2005.

    Article  Google Scholar 

  58. X. Lin, X. Ruan, M.G. Anderson, J.A. McDowell, P.E. Kroeger, S.W. Fesik, and Y. Shen. siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res, 33(14):4527–4535, 2005.

    Article  Google Scholar 

  59. D. Long, R. Lee, P. Williams, C.Y. Chan, V. Ambros, and Y. Ding. Potent effect of target structure on microRNA function. Nat Struct Mol Biol, 14:287–294, 2007.

    Article  Google Scholar 

  60. D. Long, C.Y. Chan, and Y. Ding. Analysis of microRNA-target interactions by a target structure based hybridization model. In Pacific Symposium on Biocomputing, volume 13, pages 64–74, 2008.

    Google Scholar 

  61. Z.J. Lu and D.H. Mathews. Efficient siRNA selection using hybridization thermodynamics. Nucleic Acids Res, 36(2):640–647, 2008.

    Article  Google Scholar 

  62. K.Q. Luo and D.C. Chang. The gene-silencing efficiency of siRNA is strongly dependent on the local structure of mRNA at the targeted region. Biochem Biophys Res Commun, 318(1):303–310, 2004.

    Article  Google Scholar 

  63. N.R. Markham and M. Zuker. UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol, 453:3–31, 2008.

    Article  Google Scholar 

  64. D.H. Mathews. Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. RNA, 10(8):1178–1190, 2004.

    Article  Google Scholar 

  65. D.H. Mathews. RNA secondary structure analysis using RNAstructure. In Curr Protoc Bioinformatics, Chapter 12: Unit 12.16, 2006.

    Google Scholar 

  66. D.H. Mathews, M.E. Burkard, S.M. Freier, J.R. Wyatt, and D.H. Turner. Predicting oligonucleotide affinity to nucleic acid targets. RNA, 5(11):1458–1469, 1999.

    Article  Google Scholar 

  67. D.H. Mathews, J. Sabina, M. Zuker, and D.H. Turner. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol, 288(5):911–940, 1999b.

    Article  Google Scholar 

  68. D.H. Mathews, M.D. Disney, J.L. Childs, S.J. Schroeder, M. Zuker, and D.H. Turner. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci USA, 101(19):7287–7292, 2004.

    Article  Google Scholar 

  69. C. Matranga, Y. Tomari, C. Shin, D.P. Bartel, and P.D. Zamore. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell, 123(4):607–620, 2005.

    Article  Google Scholar 

  70. J.S. McCaskill. The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers, 29(6–7):1105–1119, 1990.

    Article  Google Scholar 

  71. I. Miklos, I.M. Meyer, and B. Nagy. Moments of the Boltzmann distribution for RNA secondary structures. Bull Math Biol, 67(5):1031–1047, 2005.

    Article  MathSciNet  Google Scholar 

  72. K.C. Miranda, T. Huynh, Y. Tay, Y.S. Ang, W.L. Tam, A.M. Thomson, B. Lim, and I. Rigoutsos. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell, 126(6):1203–1217, 2006.

    Article  Google Scholar 

  73. U. Muckstein, H. Tafer, J. Hackermuller, S.H. Bernhart, P.F. Stadler, and I.L. Hofacker. Thermodynamics of RNA–RNA binding. Bioinformatics, 22(10):1177–1182, 2006.

    Article  Google Scholar 

  74. R. Nussinov and A.B. Jacobson. Fast algorithm for predicting the secondary structure of single-stranded RNA. Proc Natl Acad Sci USA, 77(11):6309–6313, 1980.

    Article  Google Scholar 

  75. M. Overhoff, M. Alken, R.K. Far, M. Lemaitre, B. Lebleu, G. Sczakiel, and I. Robbins. Local RNA target structure influences siRNA efficacy: a systematic global analysis. J Mol Biol, 348(4):871–881, 2005.

    Article  Google Scholar 

  76. P.J. Paddison, A.A. Caudy, E. Bernstein, G.J. Hannon, and D.S. Conklin. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev, 16(8):948–958, 2002.

    Article  Google Scholar 

  77. P.J. Paddison, M. Cleary, J.M. Silva, K. Chang, N. Sheth, R. Sachidanandam, and G.J. Hannon. Cloning of short hairpin RNAs for gene knockdown in mammalian cells. Nat Methods, 1(2):163–167, 2004.

    Article  Google Scholar 

  78. V. Patzel, S. Rutz, I. Dietrich, C. Koberle, A. Scheffold, and S.H. Kaufmann. Design of siRNAs producing unstructured guide-RNAs results in improved RNA interference efficiency. Nat Biotechnol, 23(11):1440–1444, 2005.

    Article  Google Scholar 

  79. Y. Pei and T. Tuschl. On the art of identifying effective and specific siRNAs. Nat Methods, 3(9):670–676, 2006.

    Article  Google Scholar 

  80. Y. Ponty. Efficient sampling of RNA secondary structures from the Boltzmann ensemble of low-energy: the boustrophedon method. J Math Biol, 56(1–2):107–127, 2008.

    MathSciNet  MATH  Google Scholar 

  81. N. Rajewsky. microRNA target predictions in animals. Nat Genet, 38:S8–13, 2006.

    Article  Google Scholar 

  82. T.A. Rand, S. Petersen, F. Du, and X. Wang. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell, 123(4):621–629, 2005.

    Article  Google Scholar 

  83. V.G. Ratushna, J.W. Weller, and C.J. Gibas. Secondary structure in the target as a confounding factor in synthetic oligomer microarray design. BMC Genomics, 6(1):31, 2005.

    Article  Google Scholar 

  84. A. Reynolds, D. Leake, Q. Boese, S. Scaringe, W.S. Marshall, and A. Khvorova. Rational siRNA design for RNA interference. Nat Biotechnol, 22(3):326–330, 2004.

    Article  Google Scholar 

  85. M.W. Rhoades, B.J. Reinhart, L.P. Lim, C.B. Burge, B. Bartel, and D.P. Bartel. Prediction of plant microRNA targets. Cell, 110(4):513–520, 2002.

    Article  Google Scholar 

  86. H. Robins, Y. Li, and R.W. Padgett. Incorporating structure to predict microRNA targets. Proc Natl Acad Sci USA, 102(11):4006–4009, 2005.

    Article  Google Scholar 

  87. D.E. Root, N. Hacohen, W.C. Hahn, E.S. Lander, and D.M. Sabatini. Genome-scale loss-of-function screening with a lentiviral RNAi library. Nat Methods, 3(9):715–719, 2006.

    Article  Google Scholar 

  88. P.C. Scacheri, O. Rozenblatt-Rosen, N.J. Caplen, T.G. Wolfsberg, L. Umayam, J.C. Lee, C.M. Hughes, K.S. Shanmugam, A. Bhattacharjee, M. Meyerson, and F.S. Collins. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci USA, 101(7):1892–1897, 2004.

    Article  Google Scholar 

  89. S. Schubert, A. Grunweller, V.A. Erdmann, and J. Kurreck. Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J Mol Biol, 348(4):883–893, 2005.

    Article  Google Scholar 

  90. D.S. Schwarz, G. Hutvagner, T. Du, Z. Xu, N. Aronin, and P.D. Zamore. Asymmetry in the assembly of the RNAi enzyme complex. Cell, 115(2):199–208, 2003.

    Article  Google Scholar 

  91. D.S. Schwarz, H. Ding, L. Kennington, J.T. Moore, J. Schelter, J. Burchard, P.S. Linsley, N. Aronin, Z. Xu, and P.D. Zamore. Designing siRNA that distinguish between genes that differ by a single nucleotide. PLoS Genet, 2(9):e140, 2006.

    Article  Google Scholar 

  92. D. Semizarov, L. Frost, A. Sarthy, P. Kroeger, D.N. Halbert, and S.W. Fesik. Specificity of short interfering RNA determined through gene expression signatures. Proc Natl Acad Sci USA, 100(11):6347–6352, 2003.

    Article  Google Scholar 

  93. Y. Shao, Y. Wu, C.Y. Chan, K. McDonough, and Y. Ding. Rational design and rapid screening of antisense oligonucleotides for prokaryotic gene modulation. Nucleic Acids Res, 34(19):5660–5669, 2006.

    Article  Google Scholar 

  94. Y. Shao, C.Y. Chan, A. Maliyekkel, C.E. Lawrence, C.E. Roninsonx, and Y. Ding. Effect of target secondary structure on RNAi efficiency. RNA, 13(10):1631–1640, 2007.

    Article  Google Scholar 

  95. Y. Shao, S. Wu, C.Y. Chan, J.R. Klapper, E. Schneider, and Y. Ding. A structural analysis of in vitro catalytic activities of hammerhead ribozymes. BMC Bioinf, 8(1):469, 2007.

    Article  Google Scholar 

  96. D. Shirane, K. Sugao, S. Namiki, M. Tanabe, M. Iino, and K. Hirose. Enzymatic production of RNAi libraries from cDNAs. Nat Genet, 36(2):190–196, 2004.

    Article  Google Scholar 

  97. H. Tafer, S.L. Ameres, G. Obernosterer, C.A. Gebeshuber, R. Schroeder, J. Martinez, and I.L. Hofacker. The impact of target site accessibility on the design of effective siRNAs. Nat Biotechnol, 26(5):578–583, 2008.

    Article  Google Scholar 

  98. Y. Tay, J. Zhang, A.M. Thomson, B. Lim, and I. Rigoutsos. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 455(7216):1124–1128, 2008.

    Article  Google Scholar 

  99. I. Tinoco, Jr., O.C. Uhlenbeck, and M.D. Levine. Estimation of secondary structure in ribonucleic acids. Nature, 230(5293):362–367, 1971.

    Article  Google Scholar 

  100. C. Tschuch, A. Schulz, A. Pscherer, W. Werft, A. Benner, A. Hotz-Wagenblatt, L.S. Barrionuevo, P. Lichter, and D. Mertens. Off-target effects of siRNA specific for GFP. BMC Mol Biol, 9:60, 2008.

    Article  Google Scholar 

  101. K. Ui-Tei, Y. Naito, F. Takahashi, T. Haraguchi, H. Ohki-Hamazaki, A. Juni, R. Ueda, and K. Saigo. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res, 32(3):936–948, 2004.

    Article  Google Scholar 

  102. E. van Rooij, L.B. Sutherland, X. Qi, J.A. Richardson, J. Hill, and E.N. Olson. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 316(5824):575–579, 2007.

    Article  Google Scholar 

  103. S. Vankoningsloo, F. de Longueville, S. Evrard, P. Rahier, A. Houbion, A. Fattaccioli, M. Gastellier, J. Remacle, M. Raes, P. Renard, and T. Arnould. Gene expression silencing with ‘specific’ small interfering RNA goes beyond specificity—a study of key parameters to take into account in the onset of small interfering RNA off-target effects. FEBS J, 275(11):2738–2753, 2008.

    Article  Google Scholar 

  104. M.C. Vella, E.Y. Choi, S.Y. Lin, K. Reinert, and F.J. Slack. The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′UTR. Genes Dev, 18(2):132–137, 2004.

    Article  Google Scholar 

  105. M.C. Vella, K. Reinert, and F.J. Slack. Architecture of a validated microRNA:target interaction. Chem Biol, 11(12):1619–1623, 2004.

    Article  Google Scholar 

  106. T.A. Vickers, S. Koo, C.F. Bennett, S.T. Crooke, N.M. Dean, and B.F. Baker. Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J Biol Chem, 278(9):7108–7118, 2003.

    Article  Google Scholar 

  107. B. Voss, R. Giegerich, and M. Rehmsmeier. Complete probabilistic analysis of RNA shapes. BMC Biol, 4:5, 2006.

    Article  Google Scholar 

  108. E.M. Westerhout, M. Ooms, M. Vink, A.T. Das, and B. Berkhout. HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome. Nucleic Acids Res, 33(2):796–804, 2005.

    Article  Google Scholar 

  109. S. Wuchty, W. Fontana, I.L. Hofacker, and P. Schuster. Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers, 49(2):145–165, 1999.

    Article  Google Scholar 

  110. T. Xia, J. SantaLucia, Jr., M.E. Burkard, R. Kierzek, S.J. Schroeder, X. Jiao, C. Cox, and D.H. Turner. Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson–Crick base pairs. Biochemistry, 37(42):14719–14735, 1998.

    Article  Google Scholar 

  111. L. Zhang, L. Ding, T.H. Cheung, M.Q. Dong, J. Chen, A.K. Sewell, X. Liu, J.R. Yates 3rd, and M. Han. Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol Cell, 28(4):598–613, 2007.

    Article  Google Scholar 

  112. J.J. Zhao and G. Lemke. Rules for ribozymes. Mol Cell Neurosci, 11(1–2):92–97, 1998.

    Article  Google Scholar 

  113. Y. Zhao, E. Samal, and D. Srivastava. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 436(7048):214–220, 2005.

    Article  Google Scholar 

  114. Y. Zhao, J.F. Ransom, A. Li, V. Vedantham, M. von Drehle, A.N. Muth, T. Tsuchihashi, M.T. McManus, R.J. Schwartz, and D. Srivastava. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell, 129(2):303–317, 2007.

    Article  Google Scholar 

  115. M. Zuker. Calculating nucleic acid secondary structure. Curr Opin Struct Biol, 10(3):303–310, 2000.

    Article  Google Scholar 

  116. M. Zuker and P. Stiegler. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res, 9(1):133–148, 1981.

    Article  Google Scholar 

Download references

Acknowledgements

The Computational Molecular Biology and Statistics Core at the Wadsworth Center is acknowledged for providing computing resources. This work was supported in part by National Science Foundation grant DBI-0650991 and National Institutes of Health grant GM068726 to Y.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Ding, Y. (2010). RNA Secondary Structure Prediction and Gene Regulation by Small RNAs. In: Feng, J., Fu, W., Sun, F. (eds) Frontiers in Computational and Systems Biology. Computational Biology, vol 15. Springer, London. https://doi.org/10.1007/978-1-84996-196-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-196-7_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-195-0

  • Online ISBN: 978-1-84996-196-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics