Skip to main content

An Evaluation of Gene Module Concepts in the Interpretation of Gene Expression Data

  • Chapter
Frontiers in Computational and Systems Biology

Part of the book series: Computational Biology ((COBO,volume 15))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R. Iyer, K. Anders, M.B. Eisen, P.O. Brown, D. Botstein, and B. Futcher. Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell, 9(12):3273–3297, 1998.

    Google Scholar 

  2. J.D. Hughes, P.W. Estep, S. Tavazoie, and G.M. Church. Computational identification of cis-regulatory elements associated with groups of functionally related genes in saccharomyces cerevisiae. J Mol Biol, 296(5):1205–1214, 2000.

    Article  Google Scholar 

  3. T.I. Lee, N.J. Rinaldi, F. Robert, D.T. Odom, Z. Bar-Joseph, G.K. Gerber, N.M. Hannett, C.T. Harbison, C.M. Thompson, I. Simon, J. Zeitlinger, E.G. Jennings, H.L. Murray, D.B. Gordon, B. Ren, J.J. Wyrick, J. Tagne, T.L. Volkert, E. Fraenkel, D.K. Gifford, and R.A. Young. Transcriptional regulatory networks in saccharomyces cerevisiae. Science, 298(5594):799–804, 2002.

    Article  Google Scholar 

  4. C.T. Harbison, D.B. Gordon, T.I. Lee, N.J. Rinaldi, K.D. Macisaac, T.W. Danford, N.M. Hannett, J. Tagne, D.B. Reynolds, J. Yoo, E.G. Jennings, J. Zeitlinger, D.K. Pokholok, M. Kellis, P.A. Rolfe, K.T. Takusagawa, E.S. Lander, D.K. Gifford, E. Fraenkel, and R.A. Young. Transcriptional regulatory code of a eukaryotic genome. Nature, 431(7004):99–104, 2004.

    Article  Google Scholar 

  5. T. Ito, K. Tashiro, S. Muta, R. Ozawa, T. Chiba, M. Nishizawa, K. Yamamoto, S. Kuhara, and Y. Sakaki. Toward a protein–protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc Natl Acad Sci USA, 97(3):1143–1147, 2000.

    Article  Google Scholar 

  6. R.B. Brem, G. Yvert, R. Clinton, and L. Kruglyak. Genetic dissection of transcriptional regulation in budding yeast. Science, 296(5568):752–755, 2002.

    Article  Google Scholar 

  7. R.B. Brem and L. Kruglyak. The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc Natl Acad Sci USA, 102(5):1572–1577, 2005.

    Article  Google Scholar 

  8. N. Bing and I. Hoeschele. Genetical genomics analysis of a yeast segregant population for transcription network inference. Genetics, 170(2):533–542, 2005.

    Article  Google Scholar 

  9. J. Zhu, B. Zhang, E.N. Smith, B. Drees, R.B. Brem, L. Kruglyak, R.E. Bumgarner, and E.E. Schadt. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat Genet, 40(7):854–861, 2008.

    Article  Google Scholar 

  10. L.H. Hartwell, J.J. Hopfield, S. Leibler, and A.W. Murray. From molecular to modular cell biology. Nature, 402(6761):C47–C52, 1999.

    Article  Google Scholar 

  11. M. Girvan and M.E.J. Newman. Community structure in social and biological networks. Proc Natl Acad Sci USA, 99(12):7821–7826, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Ihmels, G. Friedlander, S. Bergmann, O. Sarig, Y. Ziv, and N. Barkai. Revealing modular organization in the yeast transcriptional network. Nat Genet, 31(4):370–377, 2002.

    Google Scholar 

  13. B. Zhang and S. Horvath. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol, 4:17, 2005.

    MathSciNet  Google Scholar 

  14. S. Maere, P. Van Dijck, and M. Kuiper. Extracting expression modules from perturbational gene expression compendia. BMC Syst Biol, 2:33, 2008.

    Article  Google Scholar 

  15. E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Friedman. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet, 34(2):166–176, 2003.

    Article  Google Scholar 

  16. Z. Bar-Joseph, G.K. Gerber, T.I. Lee, N.J. Rinaldi, J.Y. Yoo, F. Robert, D.B. Gordon, E. Fraenkel, T.S. Jaakkola, R.A. Young, and D.K. Gifford. Computational discovery of gene modules and regulatory networks. Nat Biotechnol, 21(11):1337–1342, 2003.

    Article  Google Scholar 

  17. X. Xu, L. Wang, and D. Ding. Learning module networks from genome-wide location and expression data. FEBS Lett, 578(3):297–304, 2004.

    Article  Google Scholar 

  18. X. Liu, W.J. Jessen, S. Sivaganesan, B.J. Aronow, and M. Medvedovic. Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and CHIP-chip data. BMC Bioinform, 8:283, 2007.

    Article  Google Scholar 

  19. A. Tanay, R. Sharan, M. Kupiec, and R. Shamir. Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proc Natl Acad Sci USA, 101(9):2981–2986, 2004.

    Article  Google Scholar 

  20. K. Lemmens, T. Dhollander, T. De Bie, P. Monsieurs, K. Engelen, B. Smets, J. Winderickx, B. De Moor, and K. Marchal. Inferring transcriptional modules from CHIP-chip, motif and microarray data. Genome Biol, 7(5):R37, 2006.

    Article  Google Scholar 

  21. W. Wu and W. Li. Identifying gene regulatory modules of heat shock response in yeast. BMC Genomics, 9:439, 2008.

    Article  Google Scholar 

  22. M.C. Oldham, G. Konopka, K. Iwamoto, P. Langfelder, T. Kato, S. Horvath, and D.H. Geschwind. Functional organization of the transcriptome in human brain. Nat Neurosci, 11(11):1271–1282, 2008.

    Article  Google Scholar 

  23. A.P. Presson, E.M. Sobel, J.C. Papp, C.J. Suarez, T. Whistler, M.S. Rajeevan, S.D. Vernon, and S. Horvath. Integrated weighted gene co-expression network analysis with an application to chronic fatigue syndrome. BMC Syst Biol, 2:95, 2008.

    Article  Google Scholar 

  24. M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson, M. Ringwald, G.M. Rubin, and G. Sherlock. Gene ontology: tool for the unification of biology, the gene ontology consortium. Nat Genet, 25(1):25–29, 2000.

    Article  Google Scholar 

  25. M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hattori. The KEGG resource for deciphering the genome. Nucleic Acids Res, 32:D277–D280, 2004 (Database issue).

    Article  Google Scholar 

  26. G. Dennis, B.T. Sherman, D.A. Hosack, J. Yang, W. Gao, H.C. Lane, and R.A. Lempicki. David: Database for annotation, visualization, and integrated discovery. Genome Biol, 4(5):P3, 2003.

    Article  Google Scholar 

  27. G. Yvert, R.B. Brem, J. Whittle, J.M. Akey, E. Foss, E.N. Smith, R. Mackelprang, and L. Kruglyak. Trans-acting regulatory variation in saccharomyces cerevisiae and the role of transcription factors. Nat Genet, 35(1):57–64, 2003.

    Article  Google Scholar 

  28. E.E. Schadt, S.A. Monks, T.A. Drake, A.J. Lusis, N. Che, V. Colinayo, T.G. Ruff, S.B. Milligan, J.R. Lamb, G. Cavet, P.S. Linsley, M. Mao, R.B. Stoughton, and S.H. Friend. Genetics of gene expression surveyed in maize, mouse and man. Nature, 422(6929):297–302, 2003.

    Article  Google Scholar 

  29. P. Langfelder and S. Horvath. WGNCA: an R package for weighted correlation network analysis. BMC Bioinform, 9:559, 2008.

    Article  Google Scholar 

  30. K.R. Christie, S. Weng, R. Balakrishnan, M.C. Costanzo, K. Dolinski, S.S. Dwight, S.R. Engel, B. Feierbach, D.G. Fisk, J.E. Hirschman, E.L. Hong, L. Issel-Tarver, R. Nash, A. Sethuraman, B. Starr, C.L. Theesfeld, R. Andrada, G. Binkley, Q. Dong, C. Lane, M. Schroeder, D. Botstein, and J.M. Cherry. Saccharomyces genome database (SGD) provides tools to identify and analyze sequences from saccharomyces cerevisiae and related sequences from other organisms. Nucleic Acids Res, 32:D311–D314, 2004 (Database issue).

    Article  Google Scholar 

  31. W. Zou, D.L. Aylor, and Z. Zeng. eQTL Vewer: visualizing how sequence variation affects genome-wide transcription. BMC Bioinform, 8:7, 2007.

    Article  Google Scholar 

  32. S. Suthram, A. Beyer, R.M. Karp, Y. Eldar, and T. Ideker. eQED: an efficient method for interpreting eQTL associations using protein networks. Mol Syst Biol, 4:162, 2008.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a fellowship award from the China Scholarship Council (X.Z.) and NIH grant GM 59507 (H.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Zhang, X., Zhao, H. (2010). An Evaluation of Gene Module Concepts in the Interpretation of Gene Expression Data. In: Feng, J., Fu, W., Sun, F. (eds) Frontiers in Computational and Systems Biology. Computational Biology, vol 15. Springer, London. https://doi.org/10.1007/978-1-84996-196-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-196-7_17

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-195-0

  • Online ISBN: 978-1-84996-196-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics