Skip to main content

Optimization of Offshore Structures

  • Chapter
  • First Online:
  • 2609 Accesses

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

Abstract

Optimization techniques are widely applied to determine the optimum solution of structural design problems. This chapter introduces first the mathematical formulation of optimization problems and then gives summary of the techniques available in obtaining their solution. There are several algorithms, some require the gradient information of the objective function and constraints and some other use heuristics to search the design space for the optimum solution. Among these algorithms, sequential programming technique and differential evolution algorithm are briefly explained. This chapter demonstrates second the mathematical formulation of optimization problems including the uncertainties associated with the loads, resistances, and structural responses and then offers summary of the techniques available to obtain the solution. The chapter ends with the application examples and exercises.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Horst R, Pardolos PM (1995) Handbook of global optimization. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  2. Nocedal J, Wright JS (1999) Numerical optimization. Springer, New York

    Book  MATH  Google Scholar 

  3. Chong EKP, Zak SH (2002) Introduction to optimization. Wiley, New York

    Google Scholar 

  4. Onwubiko C (2000) Introduction to engineering design optimization. Prentice-Hall, New Jersey

    Google Scholar 

  5. Arora J (2004) Introduction to optimum design. Elsevier Academic Press, San Diego

    Google Scholar 

  6. Arora J (2011) Optimization of structural and mechanical systems, World scientific Publishing Company, Massachusetts

    Google Scholar 

  7. Ravindran A, Ragsdell KM, Relaitis GV (2006) Engineering optimization: methods and applications. Wiley, New Jersey

    Google Scholar 

  8. Horst R, Tuy H (1995) Global optimization: deterministic approaches. Springer, Berlin

    Google Scholar 

  9. Paton R (1994) Computing with biological metaphors. Chapman & Hall, London

    Google Scholar 

  10. Adami C (1998) An introduction to artificial life. Springer, New York

    Google Scholar 

  11. Matheck C (1998) Design in nature: learning from trees. Springer, Berlin

    Google Scholar 

  12. Mitchell M (1998) An introduction to genetic algorithms. The MIT Press, Cambridge

    Google Scholar 

  13. Flake GW (2000) The computational beauty of nature. MIT Press, Cambridge

    Google Scholar 

  14. Kennedy J, Eberhart R, Shi Y (2001) Swarm intelligence. Morgan Kaufmann Publishers, San Francisco

    Google Scholar 

  15. Glover F, Kochenberger GA (2003) Handbook of metaheuristics. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  16. Dreo J, Petrowski A, Siarry P, Taillard E (2006) Meta-heuristics for hard optimization. Springer, Berlin

    Google Scholar 

  17. Sean L (2009) Essentials of metaheuristics, @ http://cs.gmu.edu/~sean/book/metaheuristics/

  18. Han SP (1977) Globally convergent method for nonlinear programming. J Optim Theory Appl 22:297–309

    Article  MATH  Google Scholar 

  19. Venkataraman P (2002) Applied optimization with MATLAB programming. Wiley, New York

    Google Scholar 

  20. Davidon WC (1959) Variable metric methods for minimization, U.S. Atomic Energy Commission Research and Development Report No. ANL-5990, Argonne National Laboratory

    Google Scholar 

  21. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristics for global optimization over continuous spaces. J Global Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  22. Price KV, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization, Springer, Berlin

    Google Scholar 

  23. Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search algorithm. Comp Struct 82:781–798

    Article  Google Scholar 

  24. Rajaev S, Krishnamoorthy CS (1992) Discrete optimization of structures using genetic algorithm. J Struc Eng 118(5):1233–1250

    Article  Google Scholar 

  25. Krishnamoorthy CS, Venkatesh PP, Sudarshan R (2002) Object-oriented framework for genetic algorithms with application to space truss optimization. J Comput Civil Eng 16:66–75

    Article  Google Scholar 

  26. Camp C, Pezeshk S, Cao G (1998) Optimized design of two-dimensional structure using genetic algorithm. J Struct Eng 124:551–559

    Article  Google Scholar 

  27. Erbatur F, Hasançebi Ö, Tütüncü Tütüncü İ, Kılıç H (200) Optimal design of planar and space structures with genetic algorithms. Comput Struct 75:209–224

    Google Scholar 

  28. Saka MP (1990) Optimum design of pin-jointed steel structures with practical applications. J Struct Eng 116(10):2599–2620

    Article  Google Scholar 

  29. Toğan V, Daloğlu A (2009) Bridge truss optimization under moving load using continuous and discrete design variables in optimization methods. Indian J Eng Mater Sci 16:245–258

    Google Scholar 

  30. Toğan V, Daloğlu A (2008) An improved genetic algorithm with initial population and self-adaptive member grouping. Comput Struct 86:1204–1218

    Article  Google Scholar 

  31. Toğan V, Daloğlu A (2006) Optimization of 3d trusses with adaptive approach in genetic algorithms. Eng Struct 28:1019–1027

    Article  Google Scholar 

  32. Toğan V, Daloğlu A (2006) Shape and size optimization of 3d trusses with genetic algorithm. Tech J Turkish Chamber Civil Eng 17:3809–3826

    Google Scholar 

  33. Madsen HO, Krenk S, Lind NC (1986) Methods of structural safety. Prentice-Hall, New Jersey

    Google Scholar 

  34. Ditlevsen O, Madsen HO (1996) Structural reliability methods. Wiley, New York

    Google Scholar 

  35. Melchers RE (2001) Structural reliability analysis and prediction. Wiley, Chichester

    Google Scholar 

  36. Haldar A, Mahadevan S (2000) Reliability assessment using stochastic finite element analysis. Wiley, New York

    Google Scholar 

  37. Aoues Y, Chateauneuf A (2009) Benchmark study of numerical methods for reliability based design optimization. Struct Multidisc Optim. doi:10.1007/s00158-009-0412-2

    Google Scholar 

  38. Valdebenito MA, Schueller GI (2010) A survey on approaches for reliability-based optimization. Struct Multidisc Optim 42:645–663

    Article  MathSciNet  Google Scholar 

  39. Enevoldsen I, Sorensen JD (1994) Reliability based optimization in structural engineering. Struct Saf 15:169–196

    Article  Google Scholar 

  40. Thanedar PB, Kodiyalam S (1992) Structural optimization using probabilistic constraints. Struct Optim 4:236–240

    Article  Google Scholar 

  41. Stocki R, Siemaszko A, Kleiber M (1999) Interactive methodology for reliability-based structural design and optimization. Comput Assisted Mech Eng Sci 6:39–62

    MATH  Google Scholar 

  42. Toğan V, Karadeniz H, Daloğlu A (2010) An integrated framework including distinct algorithms for optimization of offshore towers under uncertainties. Reliab Eng Syst Saf 95:847–858

    Article  Google Scholar 

  43. Karadeniz H, Toğan V, Vrouwenvelder T (2010) Optimization of steel monopod offshore-towers under probabilistic constraints. J Offshore Mech Arct Eng 132: 021605–1, 021605–7

    Google Scholar 

  44. Toğan V, Daloğlu A, Karadeniz H (2010) Reliability-based design optimization of structural systems with continuous and discrete design variables. Tech J Turkish Chamber Civil Eng 21:5135–5159

    Google Scholar 

  45. Karadeniz H, Daloğlu A, Daloğlu A et al (2010) Reliability based optimization of offshore jacket type structures with an integrated algorithms-system. Ships Offshore Struct 5:67–74

    Article  Google Scholar 

  46. Karadeniz H, Toğan V, Vrouwenvelder T, Vrouwenvelder T (2009) An integrated reliability based design optimization of offshore towers. Reliab Eng Syst Saf 94:1510–1516

    Article  Google Scholar 

  47. Toğan V, Daloğlu A, Karadeniz H (2011) Optimization of trusses under uncertainties with harmony search. Struct Eng Mech 37:543–560

    Google Scholar 

  48. Toğan V(2009) Reliability based design optimization of offshore structures. Dissertation, Karadeniz Technical University

    Google Scholar 

  49. Toğan V, Daloğlu A (2006) Reliability and reliability based design optimization. Turk J Eng Environ Sci 30:237–249

    Google Scholar 

  50. Kuschel N, Rackwitz R (1997) Two basic problem for reliability-based optimal design. Math Methods Oper Res 46:309–333

    Article  MathSciNet  MATH  Google Scholar 

  51. Kirjner-Neto C, Polak E, Der Kiureghian A (1998) An outer approximations approach to reliability based optimal design of structures. J Optim Theory Appl 98:1–16

    Article  MathSciNet  MATH  Google Scholar 

  52. Kharmanda G, Mohamed A, Lemaire M (2002) Efficient reliability based design optimization using hybrid space with application to finite element analysis. Struct Multidisc Optim 24:233–245

    Article  Google Scholar 

  53. Cheng G, Xu L, Jiang L (2006) A sequential approximate programming strategy for reliability based structural optimization. Comput Struct 84:1353–1367

    Article  Google Scholar 

  54. Du X, Chen W (2004) Sequential optimization and reliability assessment method for efficient probabilistic design. J Mech Des 126:225–233

    Article  Google Scholar 

  55. Marek P, Gustar M, Anagsos T (1996) Simulation-based reliability assessment for structural engineers. CRCPress, Boca Raton

    Google Scholar 

  56. Breitung KW (1994) Asymptotic approximations for probability integrals Lect Notes Math. Springer, Berlin

    Google Scholar 

  57. Tu J (1999) Design potential concept for reliability based design optimization. PhD Thesis, The University of Iowa, Iowa city

    Google Scholar 

  58. Tu J, Choi KK, Park YH (2002) A new study on reliability based design optimization. J Mech Des 121:557–564

    Article  Google Scholar 

  59. Lee JO, Yang YS, Ruy WS (2002) A comparative study on reliability index and target-performance based probabilistic structural design optimization. Comp Struct 80:257–269

    Article  Google Scholar 

  60. Youn BD, Choi KK, Park YH (2003) Hybrid analysis method for reliability based design optimization. J Eng Mech 125:221–232

    Google Scholar 

  61. Hasofer AM, Lind N (1974) An exact and invariant first-order reliability format. J Eng Mech 100:111–121

    Google Scholar 

  62. Rackwitz R, Fiessler B (1978) Structural reliability under combined random load sequences. Comput Struct 9:489–494

    Article  MATH  Google Scholar 

  63. Ditlevsen O (1981) Principle of normal tail approximation. J Eng Mech 107:1191–1209

    Google Scholar 

  64. Hohenbichler M, Rackwitz R (1981) Non-normal dependent vectors in structural safety. J Eng Mech 107:1227–1238

    Google Scholar 

  65. Youn B, Choi K, Du L (2005) Adaptive probability analysis using an enhanced hybrid mean value method. Struct Multidisc Optim 29:134–148

    Article  Google Scholar 

  66. Frangopol DM, Maute K (2005) Reliability based optimization of civil and aerospace structural system, engineering design reliability handbook. CRC Press, Boca Raton

    Google Scholar 

  67. Ramu P, Qu X, Youn BD et al (2006) Inverse reliability measures and reliability-based design optimization. Int J Reliab Saf 1:187–205

    Article  Google Scholar 

  68. Agarwal H, Mozumder CK, Renaud JE et al (2007) An inverse measure based unilevel architecture for reliability based design optimization. Struct Multidisc Optim 33:217–227

    Article  Google Scholar 

  69. Kharmanda G (2007) Numerical and semi-numerical methods for reliability based design optimization. In: Tsompanakis Y, Lagaros ND, Papadrakakis M (eds) Structural design optimization considering uncertainties. Taylor & Francis/Balkema, Leiden

    Google Scholar 

  70. Chateauneuf A (2007) Principles of reliability based design optimization. In: Tsompanakis Y, Lagaros ND, Papadrakakis M (eds) Structural design optimization considering uncertainties. Taylor & Francis/Balkema, Leiden

    Google Scholar 

  71. Haug EJ, Choi KK, Komkov V (1986) Design sensitivity analysis of structural systems. Academic Press, Orlando

    MATH  Google Scholar 

  72. Mohamed A, Lemaire M (1999) The use of sensitivity operators in the reliability analysis of structures. In: 3th international conference computer stochastic mechanics, Balkema

    Google Scholar 

  73. Choi KK, Kim NH (2005) Structural sensitivity analysis and optimization. Springer, Berlin

    Google Scholar 

  74. Kleiber M, Antunez H, Hien TD et al. (1997) Parameter sensitivity in nonlinear mechanics. Wiley, New York

    Google Scholar 

  75. Choi SK, Grandhi RV, Canfield RA (2007) Reliability based structural design. Springer, London

    MATH  Google Scholar 

  76. Yi P, Cheng G, Jiang L (2006) A sequential approximate programming strategy for performance measure based probabilistic structural design optimization. Struct Saf. doi:10.1016/j.strusafe.2006.08.003

    Google Scholar 

  77. Enevoldsen I (1994) Sensitivity analysis of a reliability-based optimal solution. J Eng Mech 120:198–205

    Article  Google Scholar 

  78. Frangopol D (1985) Sensitivity of reliability-based optimum design. J Struct Eng 111:1703–1721

    Article  Google Scholar 

  79. Gill PE, Murray W, Wright HM (1981) Practical optimization. Academic Press, London

    MATH  Google Scholar 

  80. IMSL Fortran 90 MP Library (1998) Version 4.01, Visual Numeric, Houston

    Google Scholar 

  81. Differential Evolution homepage. http://www.icsi.berkeley.edu/~storn/code.html

  82. Det Norske Veritas (DNV) (1992) Buckling strength analysis, classification notes. Hovik, Norway

    Google Scholar 

  83. Uys PE, Farkas J, Jarmai K et al (2007) Optimization of a steel tower for a wind turbine structure. Eng Struct 29:1337–1342

    Article  Google Scholar 

  84. Joint committee on structural safety (JCSS) (2000) Probabilistic model code, Part 1—Basis of Design

    Google Scholar 

  85. Karadeniz H (2005) Reliability calculation of RC concrete offshore structures under extreme wave loading. In: Proceeding in 15th ISOPE, June 19–24, Seoul, Korea

    Google Scholar 

  86. StuPoc V (1979) Probabilistic reliability analysis for offshore structures. Final report, Netherlands Industrial Council for Oceanology, The Netherlands

    Google Scholar 

  87. Lancaster ER, Calladine CR, Palmer SC (2000) Paradoxical buckling behavior of thin cylindrical shell under axial compression. J Mech Sci 42:843–865

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halil Karadeniz .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Karadeniz, H., Saka, M.P., Togan, V. (2013). Optimization of Offshore Structures. In: Stochastic Analysis of Offshore Steel Structures. Springer Series in Reliability Engineering. Springer, London. https://doi.org/10.1007/978-1-84996-190-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-190-5_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-189-9

  • Online ISBN: 978-1-84996-190-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics