Skip to main content

Design and Control of an Integrated Bio-Ethanol Processor with PEMFC

  • Chapter
  • First Online:
PEM Fuel Cells with Bio-Ethanol Processor Systems

Part of the book series: Green Energy and Technology ((GREEN))

  • 1541 Accesses

Abstract

The aim of this chapter is to present the important aspects of the synthesis of an integrated bio-ethanol processor plant for hydrogen production with proton exchange membrane fuel cell systems. It is based on performing a proper energy integration to determine the operating point of maximum efficiency. A large review about the different techniques for obtaining hydrogen from bio-ethanol is investigated to justify the selection of a process based on steam reforming, followed by high- and low-temperature shift reactors and preferential oxidation, coupled to a fuel cell. Applying simulation techniques with HYSYS commercial software and using its specific thermodynamic models, the performance of the complete system has been evaluated for a variety of operating conditions. These models involve mass and energy balances, chemical equilibrium and feasible heat transfer conditions. The main operating points of the variables were determined for those conditions where the endothermic nature of the reformer has a significant effect on the overall system efficiency. Then, a heuristic procedure for defining a preliminary control structure is applied via a sensitivity analysis, evaluating controllability aspects for the most critical disturbances and considering the main objectives of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luyben WL, Tyreus BD, Luyben ML (1999) Plantwide process control. McGraw-Hill Professional Publishing, New York

    Google Scholar 

  2. Francesconi JA, Mussati MC, Mato RO, Aguirre PA (2007) Analysis of the energy efficiency of an integrated ethanol processor for PEM fuel cell systems. J Power Source 167(1):151–161

    Article  Google Scholar 

  3. Aspen Technology (2006) HYSYS User Manual

    Google Scholar 

  4. Boland P Hewitt G.F, Thomas B.E.A, Guy A.R, Marsland R.H, Linnhoff B, Townsend D (1985) A user guide on process integration for the efficient use of energy. Institute of Chemical Engineers, Rugby, UK

    Google Scholar 

  5. Luyben ML, Luyben WL (1997) Essentials of process control. Chemical Engineering Series. McGraw-Hill, International Editions, New York

    Google Scholar 

  6. Pukrushpan J, Stefanopoulou A, Varigonda S, Eborn J, Haugstetter C (2006) Control-oriented model of fuel processor for hydrogen generation in fuel cell applications. Control Eng Practice 14(3):277–293

    Article  Google Scholar 

  7. Godat J, Marechal F (2003) Optimization of a fuel cell system using process integration techniques. J Power Source 118(1–2):411–423

    Article  Google Scholar 

  8. Vaidya P, Rodrigues A (2006) Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chem Eng J 117(1):39–49

    Article  Google Scholar 

  9. Haryanto A, Fernando S, Murali N, Adhikari S (2005) Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy Fuels 19(5):2098–2106

    Article  Google Scholar 

  10. Ni M, Leung D, Leung M (2007) A review on reforming bio-ethanol for hydrogen production. Int. J. Hydrogen Energy 32(15):3238–3247

    Article  Google Scholar 

  11. Haryanto A, Fernando S, Murali N, Adhikari S (2005) Current status of hydrogen production techniques by steam reforming of ethanol: A review. Energy Fuels 19(5):2098–2106

    Article  Google Scholar 

  12. Garcia E, Laborde M (1991) Hydrogen production by the steam reforming of ethanol: thermodynamic analysis. Int. J. Hydrogen Energy 16(5):307–312

    Article  Google Scholar 

  13. Vasudeva P, Mitra N, Umasankar P, Dhingra S (1996) Steam reforming of ethanol for hydrogen production: thermodynamic analysis. Int. J. Hydrogen Energy 21(1):13–18

    Article  Google Scholar 

  14. Fishtik I, Alexander A, Datta R, Geana D (2000) A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions. Int. J. Hydrogen Energy 25(1):439–452

    Article  Google Scholar 

  15. Comas J, Laborde M, Amadeo N (2004) Thermodynamic analysis of hydrogen from ethanol using cao as a co2 sorbent. J. Power Source 138(1–2):61–67

    Article  Google Scholar 

  16. Mas V, Kipreos R, Amadeo N, Laborde M (2006) Thermodynamic analysis of ethanol/water system with the stoichiometric method. Int. J. Hydrogen Energy 31(1):21–28

    Article  Google Scholar 

  17. Cavallaro S, Freni S (1996) Ethanol steam reforming on rh/al2o3 catalysts. Energy Fuels 14(3):119–128

    Google Scholar 

  18. Galvita V, Semin G, Belyaev V, Semikolenov V, Tsiakaras P, Sobyanin V (2001) Synthesis gas production by steam reforming of ethanol. Appl Catal A 220(1–2):123–127

    Google Scholar 

  19. Auprete F, Descorme C, Duprez D (2002) Bio-ethanol catalytic steam reforming over supported metal catalysts. Catal Commun 3(6):263–267

    Article  Google Scholar 

  20. Llorca J, Homs N, Sales J, DeLa Piscina P (2002) Efficient production of hydrogen over supported cobalt catalysts from ethanol steam reforming. J Catal 209(2):306–317

    Article  Google Scholar 

  21. Cavallaro S, Chiodo V, Freni D, Mondello N, Frusteri F (2003) Performance of rh/al2o3 catalyst in the steam reforming of ethanol: H2 production for mcfc. Appl Catal A 249(1):119–128

    Article  Google Scholar 

  22. Luo R, Misra M, Himmelblau D (2005) Sensor fault detection via multiscale analysis and dynamic PCA. Ind Eng Chem Res 38:1489–1495

    Article  Google Scholar 

  23. Comas J, Marino F, Laborde M, Amadeo N (2004) Bio-ethanol steam reforming on ni/al2o3 catalyst. Chem Eng J 98(1–2):61–68

    Article  Google Scholar 

  24. Benito M, Sanz J, Isabel R, Padilla R, Arjona R, Daza L (2005) Bio-ethanol steamreforming: insights on the mechanism for hydrogen production. J Power Source 151:11–17

    Article  Google Scholar 

  25. Duan S, Senkan S (2005) Catalytic conversion of ethanol to hydrogen using combinatorial methods. Ind Eng Chem Res 44(16):6381–6386

    Article  Google Scholar 

  26. Llorca J, DeLa Piscina P, Dalmon J, Sales J, Homs N (2003) Co-free hydrogen from steam reforming of bioethanol over zno-supported cobalt catalysts: effect of the metallic precursor. Appl Catal B 43(3):355–369

    Google Scholar 

  27. Liguras D, Kondarides D, Verykios X (2003) Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Appl Catal B 43(4):345–354

    Article  Google Scholar 

  28. Akande A, Aboudheir A, Idem R, Dalai A (2006) Kinetic modeling of hydrogen production by the catalytic reforming of crude ethanol over a co-precipitated ni-al2o3 catalyst in a packed bed tubular reactor. Int J Hydrogen Energy 31(12):1707–1715

    Article  Google Scholar 

  29. Sahoo D, Vajpai S, Patel S, Pant K (2007) Kinetic modeling of steam reforming of ethanol for the production of hydrogen over co/al2o3 catalyst. Chem Eng J 125(3):139–147

    Article  Google Scholar 

  30. Akpan E, Akande A, Aboudheir A, Ibrahim H, Idem R (2007) Experimental, kinetic and 2-d reactor modeling for simulation of the production of hydrogen by the catalytic reforming of concentrated crude ethanol (crcce) over a ni-based commercial catalyst in a packed-bed tubular reactor. Chem Eng Sci 62(12):3112–3126

    Article  Google Scholar 

  31. Little A (1994) Multi-fuel reformers for fuel cells used in transportation-multi-fuel reformers: phase i. Technical report, Cambridge Arthur D. Little

    Google Scholar 

  32. Zalc J, Loffler D (2002) Fuel processing for pem fuel cells: transport and kinetic issues of system design. J Power Source 111(1):58–64

    Article  Google Scholar 

  33. Campbell J (1970) Influences of catalyst formulation and poisoning on the activity and die-off of low temprature shift catalysts. Ind Eng Chem Proc Des Dev 9(4):588–595

    Article  Google Scholar 

  34. Loffler D, McDermott S, Renn C (2003) Activity and durability of water-gas shift catalysts used for the steam reforming of methanol. J Power Source 114(1):15–20

    Article  Google Scholar 

  35. Ruettinger W, Ilinich O, Farrauto R (2003) A new generation of water gas shift catalysts for fuel cell applications. J Power Source 118(12):61–65

    Article  Google Scholar 

  36. Choi Y, Stenger H (2003) Water gas shift reaction kinetics and reactor modeling for fuel cell grade hydrogen. J Power Source 124(2):432–439

    Article  Google Scholar 

  37. Ayastuy J, Gutierrez-Ortiz M, Gonzalez-Marcos J, Aranzabal A, Gonzalez-Velasco J (2005) Kinetics of the low temperature wgs reaction over a cuo/zno/al2o3 catalyst. Ind Eng Chem Res 44(1):41–50

    Article  Google Scholar 

  38. Levent M (2001) Water-gas shift reaction over porous catalyst: temperature and reactant concentration distribution. Int. J. Hydrogen Energy 26(6):551–558

    Article  Google Scholar 

  39. Kim D, Mayor J, Ni J (2005) Parametric study of microreactor design for water gas shift reactor using an integrated reaction and heat exchange model. Chem Eng J 110(1-3):1–10

    Article  Google Scholar 

  40. Pasel J, Samsun R, Schmitt D, Peters R, Stolten D (2005) Test of a water-gas-shift reactor on a 3 kwe-scale–design points for high- and low-temperature shift reaction. J Power Source 152:189–195

    Article  Google Scholar 

  41. Quiney A, Germani G, Schuurman Y (2006) Optimization of a water-gas shift reactor over a pt/ceria/alumina monolith. J Power Source 160(2):1163–1169

    Article  Google Scholar 

  42. Basile A, Chiappetta G, Tosti S, Violante V (2001) Experimental and simulation of both pd and pd/ag for a water gas shift membrane reactor. Sep Purif Technol 25(1–3):549–571

    Article  Google Scholar 

  43. Keiski R, Salmi T, Pohjola V (1992) Development and verification of a simulation model for a non-isothermal water-gas shift reactor. Chem Eng J 48(1):17–29

    Article  Google Scholar 

  44. Amadeo N, Laborde M (1995) Hydrogen production from the low-temperature water-gas shift reaction: kinetics and simulation of the industrial reactor. Int J Hydrogen Energy 20(12):949–956

    Article  Google Scholar 

  45. Hulteberg P, Brandin J, Silversand F, Lundberg M (2005) Preferential oxidation of carbon monoxide on mounted and unmounted noble-metal catalysts in hidrogen-rich streams. Int J Hydrogen Energy 30(11):1235–1242

    Article  Google Scholar 

  46. Choi Y, Stenger H (2004) Kinetics, simulation and insights for co selective oxidation in fuel cell applications. J Power Source 129(2):246–254

    Article  Google Scholar 

  47. Echigo M, Tabata T (2004) Development of novel ru catalyst of preferential co oxidation for residential polymer electrolyte fuel cell systems. Catal Today 90(3–4):269–275

    Article  Google Scholar 

  48. Echigo M, Tabata T (2003) A study of co removal on an activated ru catalyst for polymer electrolyte fuel cell applications. Appl Catal A 251(1):157–166

    Article  Google Scholar 

  49. Toyoshima I, Somorjai G (1979) Heat of chemisorption of \({\hbox{o}}_2,\) \({\hbox{h}}_2,\) co, \({\hbox{co}}_2\) and \({\hbox{n}}_2\) on polycristalline and single crystal transition metal surfaces. Catal Rev - Sci Eng 19(1):105–159

    Google Scholar 

  50. Bissett E, Oh S, Sinkevitch R (2005) Pt surface kinetics for a prox reactor for fuel cell feedstream processing. Chem Eng Sci 60(17):4709–4721

    Article  Google Scholar 

  51. Linnhoff B, Townsend P, Boland P, Hewitt G.F, Thomas B.E.A, Guy A.R, Marsland R.H (1994) A user guide on process integration for the efficient use of energy. Institute of chemical engineers, Rugby, UK, rev sub edition

    Google Scholar 

  52. Feroldi D, Serra M, Riera J (2007) Performance improvement of a pemfc system controlling the cathode outlet air flow. J Power Source 169(1):205–212

    Article  Google Scholar 

  53. Qi A, Peppley B, Karan K (2007) Integrated fuel processors for fuel cell application: a review. Fuel Process Technol 88(1):3–22

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Basualdo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Degliuomini, L.N., Biset, S., Basualdo, M. (2012). Design and Control of an Integrated Bio-Ethanol Processor with PEMFC. In: Basualdo, M., Feroldi, D., Outbib, R. (eds) PEM Fuel Cells with Bio-Ethanol Processor Systems. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-84996-184-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-184-4_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-183-7

  • Online ISBN: 978-1-84996-184-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics