Skip to main content

Fault Detectability Index for Optimal Monitoring System Design

  • Chapter
  • First Online:
PEM Fuel Cells with Bio-Ethanol Processor Systems

Part of the book series: Green Energy and Technology ((GREEN))

  • 1488 Accesses

Abstract

In this chapter an approach based on fault detectability study for deciding the optimal measurements selection to build the principal component analysis model using combined statistics is addressed. It is believed that it will improve the monitoring systems design. The methodology applied here to the bioethanol processor with PEMFC is integrated to the previous stage of optimal sensor network and control structure selection detailed in Chap.  12. The problem dimensionality could be important so genetic algorithms for stochastic global search is preferred to solve it. The solution can be driven properly to avoid the inclusion of sensors other than those installed for control purposes. It can be done through a good definition of the functional cost. The capacity of this methodology is demonstrated with a set of typical critical faults that could occur to this complex process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zumoffen D, Basualdo M (2008) From large chemical plant data to fault diagnosis integrated to decentralized fault-tolerant control: pulp mill process application. Ind Eng Chem Res 47(4):1201–1220

    Article  Google Scholar 

  2. Zumoffen D, Basualdo M (2008) Improvements in fault tolerance characteristics for large chemical plants. Part I: waste water treatment plant with decentralized control. Ind Eng Chem Res 47(15):5464–5481

    Article  Google Scholar 

  3. Zumoffen D, Basualdo M, Molina G (2008) Improvements in fault tolerance characteristics for large chemical plants. Part II: pulp mill process with model predictive control. Ind Eng Chem Res 47(15):5482–5500

    Article  Google Scholar 

  4. Kourti T, MacGregor J (1995) Process anlysis, monitoring and diagnosis, using multivariable projection methods. Chemom Intell Lab Syst (28):3/21

    Google Scholar 

  5. Martin EB, Morris AJ, Lane S (2002) Monitoring process manufacturing performance. IEEE Control Syst Mag 22:26–39

    Article  Google Scholar 

  6. Lane S, Martin EB, Morris AJ, Gower P (2003) Application of exponentially weighted principal component analysis for the monitoring of a polymer film manufacturing process. Transac Inst Meas Control 1(25):17–35

    Article  Google Scholar 

  7. Yue HH, Qin SJ (2001) Reconstruction-based fault identification using a combined index. Ind Eng Chem Res 40:4403–4414

    Article  Google Scholar 

  8. Kadu S, Bhushan M, Gudi R (2008) Optimal sensor network design for multirate system. J Process Control 18:594–609

    Article  Google Scholar 

  9. Singh A, Hahn J (2005) Determining optimal sensor location for state and parameter estimation for stable nonlinear systems. Ind Eng Chem Res 44:5645–5659

    Article  Google Scholar 

  10. Bhushan M, Narasimhan S, Rengaswamy R (2008) Robust sensor network design for fault diagnosis. Comput Chem Eng 32:1067–1084

    Article  Google Scholar 

  11. Musulin E, Bagajewicz M, Nougués J, Puigjaner L (2004) Instrumentation design and upgrade for principal components analysis monitoring. Ind Eng Chem Res 43:2150–2159

    Article  Google Scholar 

  12. Musulin E, Yélamos I, Puigjaner L (2006) Integration of principal component analysis and fuzzy logic systems for comprehensive process fault detection and diagnosis. Ind Eng Chem Res (45):1739–1750

    Google Scholar 

  13. Zumoffen D, Basualdo M (2009) A systematic approach for the design of optimal monitoring systems for large scale processes. Ind Eng Chem Res, 2010, 49(4), 1749–1761.

    Google Scholar 

  14. Li W, Yue HH, Valle-Cervantes S, Qin SJ (2000) Recursive pca for adaptive process monitoring. J Process Control 10:471–486

    Google Scholar 

  15. Wold S (1994) Exponentially weighted moving principal components analysis and projection to latent structures. Chemom Intell Lab Syst 23:149–161

    Google Scholar 

  16. Ruiz D (2001) Fault Diagnosis In Chemical Plants Integrated To The Information System. PhD thesis, Departament d’Enginyeria Química, Escola Técnica Superior d’Enginyers Industrials de Barcelona, Universitat Politécnica de Catalunya, España, March

    Google Scholar 

  17. Musulin E (2005) Process Monitoring and Abnormal Situation Management in Chemical Processes. PhD thesis, Departament d’Enginyeria Química, Escola Tècnica Superior d’Enginyers Industrials de Barcelona, Universitat Politècnica de Catalunya, España, June

    Google Scholar 

  18. Chiang L, Pell R, Seasholtz M (2003) Exploring process data with the use of robust outlier detection algorithms. J Process Control 13:437–449

    Article  Google Scholar 

  19. ASM. Abnormal situation management consortium. http://www.asmconsortium.com

  20. Zumoffen D, Basualdo M (2010) Monitoreo, Detección de Fallas y Control de Procesos Industriales, volume 1. Asociación Argentina de Control automático (AADECA), 1 edition

    Google Scholar 

  21. Zumoffen D, Basualdo M (2009) Optimal sensor location for chemical process accounting the best control configuration. Comput Aided Chem Eng 27:1593–1598

    Article  Google Scholar 

  22. Molina G, Zumoffen D, Basualdo M (2009) A new systematic approach to find plantwide control structures. Comput Aided Chem Eng 27:1599–1604

    Article  Google Scholar 

  23. Zumoffen D, Basualdo M, Ruiz J (2009) Optimal multivariable control structure design for chemical plants. AIChE Annual Meeting, Nashville, TN, USA

    Google Scholar 

  24. Zumoffen D, Molina G, Basualdo M (2010) Plant-wide control based on minimum square deviation. Proceedings of the 9th International Symposium on Dynamics and Control of Process Systems, Leuven, Belgium, p 443–448

    Google Scholar 

  25. Molina GD, Zumoffen DAR, Basualdo MS (2010) Plant-wide control strategy applied to the tennessee eastman process at two operating points. Comput Chem Eng (In Press), Corrected Proof

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Basualdo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Zumoffen, D., Degliuomini, L.N., Basualdo, M. (2012). Fault Detectability Index for Optimal Monitoring System Design. In: Basualdo, M., Feroldi, D., Outbib, R. (eds) PEM Fuel Cells with Bio-Ethanol Processor Systems. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-84996-184-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-184-4_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-183-7

  • Online ISBN: 978-1-84996-184-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics