Skip to main content

Introduction to the Fatigue of Fiber-Reinforced Polymer Composites

  • Chapter
  • First Online:
Fatigue of Fiber-reinforced Composites

Part of the book series: Engineering Materials and Processes ((EMP))

  • 3334 Accesses

Abstract

Fiber-reinforced polymer composites are today considered equal candidates conventionally used materials such as steel, concrete, and wood for emerging structures. They offer light weight in combination with high specific mechanical properties and enhanced physical properties that make them attractive to both engineers and architects. The fatigue of fiber-reinforced polymer composites is a multiparametric problem, far more complicated than metal fatigue since the damage is caused by the synergistic effect of many damage mechanics occurring in parallel. Therefore only a new, material-oriented perception of the phenomenon and theoretical models that take into account the peculiarities exhibited by the examined materials can yield reliable fatigue life modeling tools and credible fatigue life prediction methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.A. Paipetis, Science and Technology in Homeric Epics (Springer, Berlin, 2008), pp. 181–203

    Google Scholar 

  2. A.P. Vassilopoulos, Introduction to the fatigue life prediction of composite materials and structures: Past, present and future prospects, in Fatigue Life Prediction of Composites and Composite Structures, ed. by A.P. Vassilopoulos (Woodhead Publishing Limited, Cambridge, 2010), pp. 1–44

    Chapter  Google Scholar 

  3. S.P. Rawal, Multifunctional composite materials and structures. Comp. Compos. Mater. 6.06, 67–86 (2003)

    Article  Google Scholar 

  4. T. Keller, A.P. Vassilopoulos, B.D. Manshadi, Thermomechanical behavior of multifunctional GFRP sandwich structures with encapsulated photovoltaic cells. J. Compos. Constr. 14(4), 470–478 (2010)

    Article  CAS  Google Scholar 

  5. T. Keller, C.H. Haas, T. Vallee, Structural concept, design and experimental verification of a GFRP sandwich roof structure. J. Compos. Constr. 12(4), 454–468 (2008)

    Article  CAS  Google Scholar 

  6. C. Bathias, An engineering point of view about fatigue of polymer matrix composite materials. Int. J. Fatigue 28(10 SPEC. ISS.), 1094–1099 (2006)

    Article  CAS  Google Scholar 

  7. J.A. Collins, Failure of Materials in Mechanical Design (Wiley, New York, 1993)

    Google Scholar 

  8. W. Schütz, A history of fatigue. Eng. Fract. Mech. 54(2), 263–300 (1996)

    Article  Google Scholar 

  9. J.T. Fong, What is fatigue damage?, in Damage in Composite Materials, ASTM STP 775, ed. by K.L. Reifsnider (American Society for Testing and Materials, West Conshohocken, PA, 1982), pp. 243–266

    Google Scholar 

  10. P. Brondsted, H. Lilholt, A. Lystrup, Composite materials for wind power turbine blades. Annu. Rev. Mater. Res. 35, 505–538 (2005)

    Article  CAS  Google Scholar 

  11. G.P. Sendeckyj, Life prediction for resin-matrix composite materials, in Fatigue of Composite Materials, ed. by K.L. Reifsneider (Elsevier, Amsterdam, 1991), pp. 431–483

    Google Scholar 

  12. P.C. Chou, R. Croman, Degradation and sudden-death models of fatigue of graphite/epoxy composites. in Proceedings of the 5th conference on composite materials: Testing and design, ASTM STP 674, (1979), pp. 431–454

    Google Scholar 

  13. M.M. Ratwani, H.P. Kan, Effect of stacking sequence on damage propagation and failure modes, in Composite Laminates, in Damage in Composite Materials, ASTM STP 775, ed. by K.L. Reifsneider (American Society for Testing and Materials, West Conshohocken, PA, 1982), pp. 40–62

    Google Scholar 

  14. H.T. Hahn, Fatigue behavior and life prediction of composite materials. in Composite materials: Testing and design (5th conference). ASTM STP 674. ed. by S.W. Tsai (1979) pp. 383–417

    Google Scholar 

  15. T.P. Philippidis, A.P. Vassilopoulos, Stiffness reduction of composite laminates under combined cyclic stresses. Adv. Compos. Lett. 10(3), 113–124 (2001)

    Google Scholar 

  16. H. Chai, The characterization of Mode I delamination failure in non–woven, multidirectional laminates. Composites 15(4), 277–290 (1984)

    Article  Google Scholar 

  17. K. Tohgo, Y. Hirako, H. Ishii, Mode I interlaminar fracture toughness and fracture mechanism of angle–ply carbon/nylon laminates. J. Compos. Mater. 30(6), 650–661 (1996)

    Article  CAS  Google Scholar 

  18. F. Ozdil, L.A. Carlsson, Beam analysis of angle–ply laminate DCB specimens. Compos. Sci. Technol. 59(2), 305–315 (1999)

    Article  CAS  Google Scholar 

  19. Z. Hashin, A. Rotem, A fatigue failure criterion for fibre–reinforced materials. J. Compos. Mater. 7(4), 448–464 (1973)

    Article  Google Scholar 

  20. T.P. Philippidis, A.P. Vassilopoulos, Complex stress state effect on fatigue life of GRP laminates. Part I, experimental. Int. J. Fatigue 24(8), 813–823 (2002)

    Article  Google Scholar 

  21. M.J. Owen, J.R. Griffiths, Evaluation of biaxial stress failure surfaces for a glass fabric reinforced polyester resin under static and fatigue loading. J. Mater. Sci. 13(7), 1521–1537 (1978)

    Article  CAS  Google Scholar 

  22. J.F. Mandell, D.D Samborsky, DOE/MSU composite material fatigue database: Test methods material and analysis, Sandia National Laboratories/Montana State University, SAND97–3002, (online via www.sandia.gov/wind, last update, v. 15.0, 2nd March 2006)

  23. R.P.L. Nijssen, OptiDAT–fatigue of wind turbine materials database (2006) http://www.kc-wmc.nl/optimat_blades/index.htm

  24. H. Hadavinia, A.J. Kinloch, M.S.G. Little, A.C. Taylor, The prediction of crack growth in bonded joints under cyclic–fatigue loading I. Exp. Stud. Int. J. Adhes. Adhes. 23(6), 449–461 (2003)

    Article  CAS  Google Scholar 

  25. Y. Zhang, A.P. Vassilopoulos, T. Keller, Stiffness degradation and life prediction of adhesively–bonded joints for fiber-reinforced polymer composites. Int. J. Fatigue 30(10–11), 1813–1820 (2008)

    Article  CAS  Google Scholar 

  26. Y. Zhang, A.P. Vassilopoulos, T. Keller, Environmental effects on fatigue behavior of adhesively–bonded pultruded structural joints. Compos. Sci. Technol. 69(7–8), 1022–1028 (2009)

    Article  CAS  Google Scholar 

  27. J. Schön, T. Nyman, Spectrum fatigue of composite bolted joints. Int. J. Fatigue 24(2–4), 273–279 (2002)

    Article  Google Scholar 

  28. R. Starikov, J. Schön, Local fatigue behavior of CFRP bolted joints. Compos. Sci. Technol. 62(2), 243–253 (2002)

    Article  Google Scholar 

  29. T. Keller, H. Gürtler, Quasi–static and fatigue performance of a cellular FRP bridge deck adhesively bonded to steel girders. Compos. Struct. 70(4), 484–496 (2005)

    Article  Google Scholar 

  30. D3518/D3518 M-94(2007) Standard test method for in-plane shear response of polymer matrix composite materials by tensile test of a  ± 45° laminate

    Google Scholar 

  31. ASTM D 5379/D 5379 M-05 Standard test method for shear properties of composite materials by the V-notched beam method

    Google Scholar 

  32. D3479/D3479 M-96. Standard test method for tension-tension fatigue of polymer matrix composite materials (2007)

    Google Scholar 

  33. ISO 13003 Fibre-reinforced plastics – determination of fatigue properties under cyclic loading conditions (2003)

    Google Scholar 

  34. F. Kun, H.A. Carmona, J.S. Andrade, H.J. Jr Herrmann, Universality behind basquin’s law of fatigue. Phys. Rev. Lett. 100(9), 094301 (2008)

    Article  CAS  Google Scholar 

  35. B. Harris, A historical review of the fatigue behavior of fiber-reinforced plastics, in Fatigue in Composites-Science and Technology of the Fatigue Response of Fiber-Reinforced Plastics, ed. by B. Harris (Woodhead Publishing Limited, Cambridge, 2003), pp. 1–35

    Google Scholar 

  36. G.P. Sendeckyj, Fitting models to composite materials fatigue data, in Test Methods and Design Allowables for Fibrous Composites. ASTM STP 734, ed. by C.C. Chamis (American Society for Testing and Materials, West Conshohocken, PA, 1981), pp. 245–260

    Chapter  Google Scholar 

  37. J.M. Whitney, Fatigue characterization of composite materials, in Fatigue of fibrous composite materials, ASTM STP 723, (1981), pp. 133–151

    Google Scholar 

  38. S. Shimizu, K. Tosha, K. Tsuchiya, New data analysis of probabilistic stress–life (P–S–N) curve and its application for structural materials. Int. J. Fatigue 32(3), 565–575 (2010)

    Article  CAS  Google Scholar 

  39. R.P.L. Nijssen, O. Krause, T.P. Philippidis, Benchmark of lifetime prediction methodologies. Optimat Blades Technical Report. OB_TG1_R012 Rev.001 (2004) http://www.wmc.eu/public_docs/10218_001.pdf

  40. A.P. Vassilopoulos, B.D. Manshadi, T. Keller, Influence of the constant life diagram formulation on the fatigue life prediction of composite materials. Int. J. Fatigue 32(4), 659–669 (2010)

    Article  CAS  Google Scholar 

  41. A.P. Vassilopoulos, B.D. Manshadi, T. Keller, Piecewise non-linear constant life diagram formulation for FRP composite materials. Int. J. Fatigue 32(10), 1731–1738 (2010)

    Article  CAS  Google Scholar 

  42. Z. Fawaz, F. Ellyin, Fatigue failure model for fibre–reinforced materials under general loading conditions. J. Compos. Mater 28(15), 1432–1451 (1994)

    Article  Google Scholar 

  43. T.P. Philippidis, A.P. Vassilopoulos, Complex stress state effect on fatigue life of GRP laminates. Part II, theoretical formulation. Int. J. Fatigue 24(8), 825–830 (2002)

    Article  Google Scholar 

  44. M.J. Owen, J.R. Griffiths, Evaluation of biaxial stress failure surfaces for a glass fabric reinforced polyester resin under static and fatigue loading. J. Mater. Sci. 13(7), 1521–1537 (1978)

    Article  CAS  Google Scholar 

  45. T. Fujii, F. Lin, Fatigue behavior of a plain–woven glass fabric laminate under tension/torsion biaxial loading. J. Compos. Mater. 29(5), 573–590 (1995)

    Article  CAS  Google Scholar 

  46. M–.H.R. Jen, C.H. Lee, Strength and life in thermoplastic composite laminates under static and fatigue loads Part I: Experimental. Int. J. Fatigue 20(9), 605–615 (1998)

    Article  CAS  Google Scholar 

  47. E.W. Smith, K.J. Pascoe, Biaxial fatigue of a glass–fiber reinforced composite. Part 2: Failure criteria for fatigue and fracture, in Biaxial and Multiaxial Fatigue, EGF3, ed. by M.W. Brown, K.J. Miller (Mechanical Engineering Publications, London, 1989), pp. 397–421

    Google Scholar 

  48. L.B. Lessard, M.M. Shokrieh, Two–dimensional modeling of composite pinned–joint failure. J. Compos. Mater. 29(5), 671–697 (1995)

    Article  Google Scholar 

  49. M.M. Shokrieh, L.B Lessard, C. Poon, Three–dimensional progressive failure analysis of pin/bolt loaded composite laminates, in Bolted/bonded joints in polymeric composites, AGARD CP 590, (1997), pp. 7.1–7.10

    Google Scholar 

  50. M.M. Shokrieh, L.B. Lessard, Multiaxial fatigue behavior of unidirectional plies based on uniaxial fatigue experiments–I. Model. Int. J. Fatigue 19(3), 201–207 (1997)

    Article  CAS  Google Scholar 

  51. M.M. Shokrieh, L.B. Lessard, Multiaxial fatigue behavior of unidirectional plies based on uniaxial fatigue experiments–II. Exp. Eval. Int. J. Fatigue 19(3), 209–217 (1997)

    Article  CAS  Google Scholar 

  52. M. Kawai, N. Maki, Fatigue strength of cross–ply CFRP laminates at room and high temperatures and its phenomenological modeling. Int. J. Fatigue 28(10), 1297–1306 (2006)

    Article  CAS  Google Scholar 

  53. M. Kawai, T. Taniguchi, Off–axis fatigue behavior of plain woven carbon/epoxy composites at room and high temperatures and its phenomenological modeling. Compos. Part A–Appl. S 37(2), 243–256 (2006)

    Article  Google Scholar 

  54. H.J. Sutherland, J.F. Mandell, Optimized constant life diagram for the analysis of fiberglass composites used in wind turbine blades. J. Sol. Energy Eng. Trans. ASME 127(4), 563–569 (2005)

    Article  CAS  Google Scholar 

  55. M. Kawai, M. Koizumi, Nonlinear constant fatigue life diagrams for carbon/epoxy laminates at room temperature. Compos. Part A–Appl. S 38(11), 2342–2353 (2007)

    Article  Google Scholar 

  56. B. Harris, A parametric constant–life model for prediction of the fatigue lives of fibre–reinforced plastics, in Fatigue in Composites, ed. by B. Harris (Woodhead Publishing Limited, Cambridge, 2003), pp. 546–568

    Chapter  Google Scholar 

  57. J. Awerbuch, H.T. Hahn, Off–axis fatigue of graphite/epoxy composites. In: Fatigue of fibrous composite materials. ASTM STP 723, (1981), pp. 243–273

    Google Scholar 

  58. J.F. Mandell, D.D. Samborsky, L. Wang, N.K. Wahl, New fatigue data for wind turbine blade materials. J. Sol. Energy Eng. Trans. ASME 125(4), 506–514 (2003)

    Article  CAS  Google Scholar 

  59. A. Hosoi, N. Sato, Y. Kusumoto, K. Fujiwara, H. Kawada, High–cycle fatigue characteristics of quasi–isotropic CFRP laminates over 108 cycles (initiation and propagation of delamination considering interaction with transverse cracks). Int. J. Fatigue 32(1), 29–36 (2010)

    Article  CAS  Google Scholar 

  60. W. Van Paepegem, J. Degrieck, Effects of load sequence and block loading on the fatigue response of fiber-reinforced composites. Mech. Adv. Mater Struct. 9(1), 19–35 (2002)

    Article  Google Scholar 

  61. S. Erpolat, I.A. Ashcroft, A.D. Crocombe, M.M. Abdel–Wahab, A study of adhesively bonded joints subjected to constant and variable amplitude fatigue. Int. J. Fatigue 26(11), 1189–1196 (2004)

    Article  Google Scholar 

  62. S. Erpolat, I.A. Ashcroft, A.D. Crocombe, M.M. Abdel–Wahab, Fatigue crack growth acceleration due to intermittent overstressing in adhesively bonded CFRP joints. Compos. Part A–Appl. S 35(10), 1175–1183 (2004)

    Article  Google Scholar 

  63. T.P. Philippidis, A.P. Vassilopoulos, Life prediction methodology for GFRP laminates under spectrum loading. Compos. Part A–Appl. S 35(6), 657–666 (2004)

    Article  Google Scholar 

  64. Y. Miyano, M. Nakada, J. Ichimura, E. Hayakawa, Accelerated testing for long–term strength of innovative CFRP laminates for marine use. Compos. Part B–Eng. 39(1), 5–12 (2008)

    Article  Google Scholar 

  65. Z. Fawaz, F. Ellyin, Fatigue failure model for fibre–reinforced materials under general loading conditions. J. Compos. Mater 28(15), 1432–1451 (1994)

    Article  Google Scholar 

  66. T.P. Philippidis, V.N. Nikolaidis, A.A. Anastassopoulos, Damage characterization of carbon/carbon laminates using neural network techniques on AE signals. NDT&E Int. 31(5), 329–340 (1998)

    Article  CAS  Google Scholar 

  67. T.P. Philippidis, T.T. Assimakopoulou, Strength degradation due to fatigue–induced matrix cracking in FRP composites: An acoustic emission predictive model. Compos. Sci. Technol. 68(15–16), 3272–3277 (2008)

    Article  CAS  Google Scholar 

  68. F. Colpo, L. Humbert, J. Botsis, Characterization of residual stresses in a single fibre composite with FBG sensor. Compos. Sci. Technol. 67(9), 1830–1841 (2007)

    Article  CAS  Google Scholar 

  69. D. Karalekas, J. Cugnoni, J. Botsis, Monitoring of hygrothermal ageing effects in an epoxy resin using FBG sensor: A methodological study. Compos. Sci. Technol. 69(3–4), 507–514 (2009)

    Article  CAS  Google Scholar 

  70. W. Van Paepegem, Fatigue damage modeling of composite materials with phenomenological residual stiffness approach, in Fatigue Life Prediction of Composites and Composite Structures, ed. by A.P. Vassilopoulos (Woodhead Publishing Limited, Cambridge, 2010), pp. 102–138

    Chapter  Google Scholar 

  71. T.P. Philippidis, E.N. Eliopoulos, A progressive damage mechanics algorithm for life prediction of composite materials under cyclic complex stress, in Fatigue Life Prediction of Composites and Composite Structures, ed. by A.P. Vassilopoulos (Woodhead Publishing Limited, Cambridge, 2010), pp. 390–436

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios P. Vassilopoulos .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Vassilopoulos, A.P., Keller, T. (2011). Introduction to the Fatigue of Fiber-Reinforced Polymer Composites. In: Fatigue of Fiber-reinforced Composites. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-84996-181-3_1

Download citation

Publish with us

Policies and ethics