Skip to main content

Modeling Nonsmooth Nonlinearities in Mechanical Systems

  • Chapter
Nonlinear Control of Vehicles and Robots

Part of the book series: Advances in Industrial Control ((AIC))

  • 2882 Accesses

Abstract

The first part of the Chap. 9 presents the basic theoretical notions from the field of modeling and stability of nonsmooth systems. Afterward, it focuses on modeling of two nonsmooth nonlinearities that can influence the performances of mechanical control systems: friction and backlash. The most important static and dynamic friction models, that are applied in friction compensation algorithms, are discussed. After presenting the well known friction models from the literature, a novel, piecewise linearly parameterized model is introduced based on which the problem of friction compensation with unknown friction parameters can easily be solved. At the end of the chapter it is presented, how the backlash type nonlinearity influences the motion of mechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Bender, F., Lampaert, V., Swevers, J.: The generalized Maxwell-slip model: a novel model for friction simulation and compensation. IEEE Trans. Automat. Control 50(11), 1883–1887 (2005)

    Article  MathSciNet  Google Scholar 

  2. Armstrong-Hèlouvry, B.: Control of Machines with Friction. Kluwer Academic, Boston (1991)

    MATH  Google Scholar 

  3. Åstrom, K.J., Canudas-de-Wit, C.: Revisiting the LuGre friction model. IEEE Control Syst. Mag. 28(6), 101–114 (2008)

    Article  MathSciNet  Google Scholar 

  4. Caundas-de-Wit, C., Ollson, H., Åstrom, K.J., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Automat. Control 40(3), 419–425 (1995)

    Article  MathSciNet  Google Scholar 

  5. Davrazos, G., Koussoulas, N.T.: A review of stability results for switched and hybrid systems. In: Proc. of 9th Mediterranean Conference on Control and Automation, Dubrovnik, Croatia (2011)

    Google Scholar 

  6. Dupont, P., Armstrong, B., Altpeter, F.: Single state elastoplastic friction models. IEEE Trans. Automat. Control 47(5), 787–792 (2002)

    Article  MathSciNet  Google Scholar 

  7. Guo, Z., Huang, L.: Generalized Lyapunov method for discontinuous systems. Nonlinear Anal. 71, 3083–3092 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Johansson, M.: Piecewise Linear Control Systems—a Computational Approach. Springer, Berlin (2003)

    MATH  Google Scholar 

  9. Lampaert, V., Swevers, J., Al-Bender, F.: Modification of the Leuven integrated friction model structure. IEEE Trans. Automat. Control 47(4), 683–687 (2002)

    Article  MathSciNet  Google Scholar 

  10. Leine, R.I.: Bifurcations in discontinuous mechanical systems of Filippov-type. PhD thesis, Technische Universiteit Eindhoven (2000)

    Google Scholar 

  11. Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-smooth Mechanical Systems. Springer, Berlin (2006)

    Google Scholar 

  12. Liberzon, D.: Switched systems. In: Hristu-Varsakelis, D., Levine, W.S. (eds.) Handbook of Networked and Embedded Control Systems, pp. 559–574. Birkhauser, Boston (2005)

    Chapter  Google Scholar 

  13. Liberzon, D., Morse, A.S.: Basic problems in stability and design of switched systems. IEEE Control Syst. Mag. 19(5), 59–70 (1999)

    Article  Google Scholar 

  14. Márton, L.: Robust-adaptive control of nonlinear singlevariable mechatronic systems and robots. PhD thesis, Budapest University of Technology and Economics (2006)

    Google Scholar 

  15. Nordin, M., Gutman, P.-O.: Controlling mechanical systems with backlash—a survey. Automatica 38, 1633–1649 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Panteley, E., Ortega, R., Gafvert, M.: An adaptive friction compensator for global tracking in robotic manipulator. Syst. Control Lett. 33, 307–313 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shevitz, D., Paden, B.: Lyapunov stability theory of nonsmooth systems. IEEE Trans. Automat. Control 39(9), 1910–1914 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Swevers, J., Al-Bender, F., Ganseman, C.G., Prajogo, T.: An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Trans. Automat. Control 45(4), 675–686 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tao, G., Kokotovic, P.V.: Adaptive Control of Systems with Sensor and Actuator Nonlinearities. Wiley, New York (1996)

    MATH  Google Scholar 

  20. Wu, Q., Sepehri, N.: On Lyapunov’s stability analysis of non-smooth systems with applications to control engineering. Int. J. Non-Linear Mech. 36, 1153–1161 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béla Lantos .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Lantos, B., Márton, L. (2011). Modeling Nonsmooth Nonlinearities in Mechanical Systems. In: Nonlinear Control of Vehicles and Robots. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-84996-122-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-122-6_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-121-9

  • Online ISBN: 978-1-84996-122-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics