Skip to main content

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

  • 1635 Accesses

Abstract

While difficult in their own right, scheduling problems are further complicated by the concurrent flow of various parts, the sharing of different types of resources, and the random occurrence of disruptive events. To deal with such complexity, multi-pass scheduling has been developed. Successful application of multi-pass scheduling, however, largely depends on its ability to quickly and effectively select the best decision-making rule. The objective of the present work is to enhance the performance of multi-pass scheduling through optimization via simulation. To this end, we combine random search and statistical selection to create a potent approach for optimization over a large but finite solution space when the objective function must be evaluated using noisy estimation. The nested partitions method is a global search strategy that is continuously adapted via a partitioning of the feasible solution region. By allocating computing resources to potentially critical design points, the optimal computing budget allocation method, in turn, provides an adaptive sampling mechanism from a feasible region. Through carefully designed experiments, the proposed approach is shown to perform markedly better than naive multi-pass scheduling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alrefaei MH, AndradĆ³ttir S (1999) A simulated annealing algorithm with constant temperature for discrete stochastic optimization. Mgment. Sci., 45:748ā€“764

    ArticleĀ  Google ScholarĀ 

  • Alrefaei MH, AndradĆ³ttir S (2001) A modification of the stochastic ruler method for discrete stochastic optimization. Eur. J. Oper. Res., 133:160ā€“182

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • AndradĆ³ttir S (1998) Simulation optimization. In: J. Banks (ed.) Handbook of Simulation, John Wiley, New York

    Google ScholarĀ 

  • Chen CH (1996) A lower bound for the correct subset-selection probability and its application to discrete-event system simulations. IEEE Trans. Auto. Control, 41(8):1227ā€“1231

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Chen CH, Shi L (2000) A new algorithm for stochastic discrete resource allocation optimization. Disc. Event Dynam. Syst.: Theo. Appl., 10:271ā€“294

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  • Chen CH, YĆ¼cesan E, Chen HC et al. (1997) New development of optimal computing budget allocation for discrete event simulation. In: Proceedings of the 1997 Winter Simulation Conference, pp. 334ā€“341

    Google ScholarĀ 

  • Chen CH, Wu D, Dai L (1999) Ordinal comparison of heuristic algorithms using stochastic optimization. IEEE Trans. Robo. Auto., 15(1):44ā€“56

    ArticleĀ  Google ScholarĀ 

  • Chen CH, Lin J, YĆ¼cesan E et al. (2000a) Simulation budget allocation for further enhancing the efficiency of ordinal optimization. J. Disc. Event. Dynam. Syst., 10:251ā€“270

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Chen HC, Chen CH, YĆ¼cesan E (2000b) Computing efforts allocation for ordinal optimization and discrete event simulation. IEEE Trans. Auto. Control, 45:960-964

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Chen CH, YĆ¼esan E, Lin J et al. (2003) Optimal computing budget allocation for Monte-Carlo simulation with application to product design. Simu. Mode. Prac. Theo., 11:57ā€“74

    ArticleĀ  Google ScholarĀ 

  • Chiu C, Yih Y (1995) A learning-based methodology for dynamic scheduling in distributed manufacturing systems. Int. J. Prod. Res., 33(11):3217ā€“3232

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Cho H, Wysk RA (1993) A robust adaptive scheduler for an intelligent workstation controller. Int. J. Prod. Res., 31:771-789

    ArticleĀ  Google ScholarĀ 

  • Chunda B, Mize JH (1994) Scheduling and control of flexible manufacturing systems: a critical review. Int. J. Comput. Integr. Manuf., 7:340ā€“355

    ArticleĀ  Google ScholarĀ 

  • Davis WJ, Jones AT (1988) A real-time production scheduler for a stochastic manufacturing environment. Int. J. Comput. Integr. Manuf., 4(4):531ā€“544

    Google ScholarĀ 

  • Fu MC (2002) Optimization for simulation: theory and practice. INFORMS J. Comput., 14:192ā€“215

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  • Glynn P, Juneja S (2004) A large deviations perspective on ordinal optimization. In: Proceedings of the 2004 Winter Simulation Conference, pp. 577ā€“585

    Google ScholarĀ 

  • Gong WB, Ho YC, Zhai W (1999) Stochastic comparison algorithm for discrete optimization with estimation. SIAM J. Opt., 10:384ā€“404

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  • Hong LJ, Nelson BL (2006) Discrete optimization via simulation using COMPASS. Oper. Res., 54:115ā€“129

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Jeong KC, Kim YD (1998) A real-time scheduling mechanism for a flexible manufacturing system: using simulation and dispatching rules. Int. J. Prod. Res., 36:2609ā€“2626

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Jones AT, Rabelo L, Yih Y (1995) A Hybrid approach for real-time sequencing and scheduling. Int. J. Comput. Integr. Manuf., 8(2):145ā€“154

    ArticleĀ  Google ScholarĀ 

  • Kim CO, Min HS, Yih Y (1998) Integration of inductive learning and neural networks for multiobjective FMS scheduling. Int. J. Prod. Res., 36(9):2497ā€“2509

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Kutanoğlu E, Sabuncuoğlu I (2002) Experimental investigation of iterative simulation-based scheduling in a dynamic and stochastic job shop. J. Manuf. Syst., 20(4):264ā€“279

    ArticleĀ  Google ScholarĀ 

  • Ɠlafsson S (2004) Two-stage nested partitions method for stochastic optimization. Metho. Comput. Appl. Prob., 6:5ā€“27

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Pichitlamken J, Nelson BL, Hong LJ (2006) A sequential procedure for neighbourhood selection of the best in optimization via simulation. Eur. J. Oper. Res., 173:283ā€“296

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Rubinstein RY (1999) The cross entropy method for combinatorial and continuous optimization. Metho. Comput. Appl. Prob., 1:127ā€“190

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Shi L, Olafsson S (2000) Nested partitions method for stochastic optimization. Meth. Comput. Appl. Prob., 2(3):271ā€“291

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  • Shi L, Olafsson S (2009) Nested partitions: method, theory and applications. Springer

    Google ScholarĀ 

  • Shi L, Olafsson S, Sun N (1999) New parallel randomized algorithms for the travelling salesman problem. Comput. Oper. Res., 26:371ā€“394

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  • Stamatopoulos C (2002) Sample-based fishery surveys: A technical handbook, FAO, Rome

    Google ScholarĀ 

  • Sudiarso A, Labib AW (2002) A fuzzy logic approach to an integrated maintenance and production scheduling algorithm. Int. J. Prod. Res., 40(13):3121ā€“3138

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Swisher JR, Jacobson SH, YĆ¼cesan E (2003) Discrete-event simulation optimization using ranking, selection, and multiple comparison procedures: a survey. ACM Trans. Mod. Comput. Simul., 13:134ā€“154

    ArticleĀ  Google ScholarĀ 

  • Tormos P, Lova A (2003) An efficient multi-pass heuristic for project scheduling with constrained resources. Int. J. Prod. Res., 41(5):1071ā€“1086

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Wu CFJ, Michael H (2000) Experiments: planning, analysis, and parameter design optimization. John Wiley and Sons

    Google ScholarĀ 

  • Wu DS, Wysk RA (1988) Multi-pass expert control system a control/scheduling structure for flexible manufacturing cells. J. Manuf. Syst., 7(2):107ā€“120

    ArticleĀ  Google ScholarĀ 

  • Yang H, Wu Z (2003) The application of adaptive genetic algorithms in flexible manufacturing systems dynamic rescheduling. Int. J. Comput. Integr. Manuf., 16(6):382ā€“397

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. YĆ¼cesan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Yoo, T., Cho, HB., YĆ¼cesan, E. (2010). Enhancing the Effectiveness of Multi-pass Scheduling Through Optimization via Simulation. In: Benyoucef, L., Grabot, B. (eds) Artificial Intelligence Techniques for Networked Manufacturing Enterprises Management. Springer Series in Advanced Manufacturing. Springer, London. https://doi.org/10.1007/978-1-84996-119-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-119-6_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-118-9

  • Online ISBN: 978-1-84996-119-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics