Skip to main content

High-Resolution Interactive Displays

  • Chapter
  • First Online:
Tabletops - Horizontal Interactive Displays

Part of the book series: Human-Computer Interaction Series ((HCIS))

Abstract

Tabletop displays are mostly used for casual applications that do not require intricate graphics or precise manipulation. Browsing photographs and maps are common applications. A higher resolution is required to support work involving detailed graphics and text. A display the size of a desk, with the resolution of a typical LCD monitor, will have around 14 megapixels. Tabletop displays are usually constructed from projectors, and the only way to achieve this size and resolution is to combine multiple projectors. We present techniques from multi-projector display walls and adapt them for tabletops. These high-resolution displays also require high-resolution input, and although touch is simple and natural, better accuracy can generally be achieved using a pen. We also review technologies for pen input on tabletops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.procams.org/

  2. 2.

    http://cairographics.org/

References

  1. Czerwinski M, Smith G, Regan T, Meyers B, Robertson G, Starkweather G (2003) Toward characterizing the productivity benefits of very large displays. In: Proceedings of the IFIP Interact 2003, IOS Press, Amsterdam, pp 9–16

    Google Scholar 

  2. Tuddenham P (2008) Tabletop interfaces for remote collaboration. PhD thesis, University of Cambridge, Technical Report UCAM-CL-TR-734, December 2008

    Google Scholar 

  3. Wellner PD (1993) Interacting with paper on the DigitalDesk. Communications of the ACM 36(7):87–97

    Article  Google Scholar 

  4. Robinson P, Sheppard D, Watts R, Harding R, Lay S (1997) A framework for interacting with paper. In: Proceedings of the Eurographics ’97, vol 16, Budapest, Hungary, http://www.cl.cam.ac.uk/research/origami/Origami1997c/

    Google Scholar 

  5. Ashdown M (2004) Personal projected displays. PhD thesis, University of Cambridge, Technical Report UCAM-CL-TR-585

    Google Scholar 

  6. Robinson P (1995) Virtual offices. http://www.cl.cam.ac.uk/˜pr10/publications/rsvr95.pdf, Proceedings of the royal society discussion meeting on virtual reality, July 1995, British Telecom Publication number SRD/R5/1

    Google Scholar 

  7. Wellner PD (1994) Interacting with paper on the DigitalDesk. PhD thesis, University of Cambridge Computer Laboratory, Technical Report UCAM-CL-TR-330

    Google Scholar 

  8. Bishop G, Welch G (2000) Working in the office of “Real Soon Now”. IEEE Computer Graphics and Applications 20(4):76–78

    Article  Google Scholar 

  9. Li K, Chen H, Chen Y, Clark DW, Cook P, Damianakis S, Essl G, Finkelstein A, Funkhouser T, Housel T, Klein A, Liu Z, Praun E, Samanta R, Shedd B (2000) Building and using a scalable display wall system. IEEE Computer Graphics and Applications 20(4):29–37

    Article  Google Scholar 

  10. Majumder A, Brown MS (2007) Practical multi-projector display design. A. K. Peters, MA

    Google Scholar 

  11. Bernard ML, Chaparro BS, Mills MM, Halcomb CG (2003) Comparing the effects of text size and format on the readibility of computer-displayed Times New Roman and Arial text. International Journal of Human-Computer Studies 59(6):823–835

    Article  Google Scholar 

  12. Tullis TS, Boynton JL, Hersh H (1995) Readability of fonts in the Windows environment. In: Proceedings of the CHI’ 95 conference companion, ACM Press, New York, pp 127–128

    Google Scholar 

  13. Kaiser PK (2009) The joy of visual perception: A web book. http://www.yorku.ca/eye/acuity.htm, accessed 22.06.2009

  14. Boff DR, Lincoln JE (1988) Engineering data compendium of human perception and performance. http://www.dtic.mil/dticasd/edc/EDCSec01/e01-0602.html, accessed 22.06.2009

  15. Coldefy F, Louis-dit-Picard S (2007) DigiTable: An interactive multiuser table for collocated and remote collaboration enabling remote gesture visualization. In: Proceedings of the PROCAMS 2007, Minneapolis

    Google Scholar 

  16. Scott SD (2005) Territoriality in collaborative tabletop workspaces. PhD thesis, University of Calgary

    Google Scholar 

  17. Isenberg P, Carpendale S (2007) Interactive tree comparison for co-located collaborative information visualization. IEEE Transactions on Visualization and Computer Graphics 13(6):1232–1239 (Proceedings of Visualization/Information Visualization 2007)

    Google Scholar 

  18. Ashdown M, Robinson P (2005) Escritoire: A personal projected display. IEEE Multimedia 12(1):34–42, doi: 10.1109/MMUL.2005.18

    Article  Google Scholar 

  19. Hu T, Chia Y, Chan L, Hung Y, Hsu J (2008) i-m-Top: An interactive multi-resolution tabletop system accommodating to multi-resolution human vision. In: Proceedings of the TABLETOP 2008, Amsterdam, The Netherlands, pp 177–180

    Google Scholar 

  20. Streitz NA, Geißler J, Holmer T, Konomi S, Müller-Tomfelde C, Reischl W, Rexroth P, Seitz P, Steinmetz R (1999) i-LAND: A interactive landscape for creativity and innovation. In: Proceedings of the CHI ’99, Pittsburgh, pp 120–127

    Google Scholar 

  21. Kakehi Y, Iida M, Naemura T, Shirai Y, Matsushita M, Ohguro T (2005) Lumisight table: An interactive view-dependent tabletop display. IEEE Computer Graphics and Applications 25(1):48–53

    Article  Google Scholar 

  22. Microsoft Surface Datasheet (2008) http://download.microsoft.com/download/2/3/b/23b2282e-9562-40ee-910c-ad721b57217d/MicrosoftSurfaceDatasheet.pdf, accessed 22.06.2009

  23. Tuddenham P, Robinson P (2007) T3: Rapid prototyping of high-resolution and mixed-presence tabletop applications. In: Proceedings of the IEEE TABLETOP 2007, Newport, Rhode Island, USA. pp 11–18

    Google Scholar 

  24. Ashdown M, Robinson P (2003) The escritoire: A personal projected display. In: Proceedings of the 11th international conference in central Europe on computer graphics, visualization and computer vision (WSCG 2003), Pilsen, Czech Republic, pp 33–40

    Google Scholar 

  25. Baudisch P, Good N, Stewart P (2001) Focus plus context screens: Combining display technology with visualization techniques. In: Proceedings of the UIST 2001, Orlando, FL, pp 31–40

    Google Scholar 

  26. Hsiao CH, Chan LW, Hu TT, Chen MC, Hsu J, Hung YP (2009) To move or not to move: A comparison between steerable and fixed regions of high-resolution projection in multi-resolution tabletop systems. In: Proceedings of the ACM CHI 2009, ACM Press, New York, pp 153–162

    Google Scholar 

  27. Bimber O, Raskar R (2005) Spatial augmented reality: Merging real and virtual worlds. A. K. Peters, available as a free download from http://www.uni-weimar.de/medien/ar/SpatialAR

  28. Sukthankar R, Stockton RG, Mullin MD (2001) Smarter presentations: Exploiting homography in camera-projector systems. In: IEEE Proceedings of the ICCV 2001, IEEE Computing Society, Washington, DC, pp 247–253

    Google Scholar 

  29. Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, 2nd edition. Cambridge University Press, Cambridge

    Google Scholar 

  30. Kruger R, Carpendale S, Scott SD, Greenberg S (2003) How people use orientation on tables: Comprehension, coordination and communication. In: Proceedings of the ACM GROUP ’03, ACM Press, New York, pp 369–378

    Google Scholar 

  31. Hereld M, Stevens R (2005) Pixel-aligned warping for multiprojector tiled displays. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPRW’05), IEEE Computer Society, p 104

    Google Scholar 

  32. Tuddenham P, Robinson P (2007) Improved legibility of text for multiprojector tiled displays. In: Proceedings of the PROCAMS 2007, IEEE Computer Society, pp 1–8, doi: 10.1109/CVPR.2007.383464

    Google Scholar 

  33. Brown MS, Seales WB (2002) A practical and flexible tiled display system. In: PG ’02: Proceedings of the 10th Pacific conference on computer graphics and applications, IEEE Computer Society, Washington, DC, p 194

    Google Scholar 

  34. Raskar R, Brown M, Yang R, Chen WC, Welch G, Towles H, Seales B, Fuchs H (1999) Multi-projector displays using camera-based registration. In: Proceedings of the IEEE visualization ’99, San Francisco, pp 161–168

    Google Scholar 

  35. Harville M, Culbertson B, Sobel I, Gelb D, Fitzhugh A, Tanguay D (2006) Practical methods for geometric and photometric correction of tiled projector displays on curved surfaces. In: Proceedings of the IEEE international workshop on projector-camera systems 2006, New York

    Google Scholar 

  36. Stone MC (2001) Color and brightness appearance issues in tiled displays. IEEE Computer Graphics and Applications 21(5):58–66

    Article  Google Scholar 

  37. Hereld M, Judson IR, Stevens RL (2000) Introduction to building projection-based tiled display systems. IEEE Computer Graphics and Applications 20(4):22–28

    Article  Google Scholar 

  38. Wyszecki G, Stiles WS (1982) Color science: Concepts and methods, quantitative data and formulae, 2nd edition, Wiley, New York

    Google Scholar 

  39. Majumder A, Stevens R (2002) Lam: Luminance attenuation map for photometric uniformity in projection based displays. In: Proceedings of the ACM virtual reality and software technology, ACM Press, New York, pp 147–154

    Google Scholar 

  40. Majumder A, Stevens R (2005) Perceptual photometric seamlessness in projection-based tiled displays. ACM Transactions on Graphics 24(1):118–139

    Article  Google Scholar 

  41. Majumder A, Stevens R (2004) Color nonuniformity in projection-based displays: Analysis and solutions. IEEE Transactions on Visualization and Computer Graphics 10(2):177–188, doi: 10.1109/TVCG.2004.1260769

    Article  Google Scholar 

  42. Grossberg MD, Peri H, Nayar SK, Belhumeur PN (2004) Making one object look like another: Controlling appearance using a projector-camera system. In: Proceedings of the CVPR 2004, IEEE Computer Society, Washington, DC, pp 452–459

    Google Scholar 

  43. Ashdown M, Okabe T, Sato I, Sato Y (2006) Robust content-dependent photometric projector compensation. In: Proceedings of the IEEE international workshop on projector camera systems (PROCAMS) 2006, IEEE Computer Society, Washington, DC, doi: 10.1109/CVPRW.2006.172

    Google Scholar 

  44. Isenberg T, Miede A, Carpendale S (2006) A buffer framework for supporting responsive interaction in information visualization interfaces. In: Proceedings of the 4th international conference on creating, connecting and collaborating through computing (C5’06), IEEE Computer Society, Washington, DC, pp 262–269

    Google Scholar 

  45. Miede A (2006) Realizing responsive interaction for tabletop interaction metaphors. Master’s thesis, Otto-von-Guericke-Universit¨at Magdeburg

    Google Scholar 

  46. Humphreys G, Houston M, Ng R, Frank R, Ahem S, Kirchner P, Klosowski J (2002) Chromium: A stream processing framework for interactive rendering on clusters. ACM Transactions on Graphics 21(3):693–702

    Article  Google Scholar 

  47. Raskar R, van Baar J, Beardsley P, Willwacher T, Rao S, Forlines C (2003) iLamps: Geometrically aware and self-configuring projectors. In: Proceedings of the ACM SIGGRAPH 2003, ACM Press, New York, pp 809–818

    Google Scholar 

  48. Summet J, Somani R, Abowd G, Rehg J (2002) Interactive walls: Addressing the challenges of large-scale interactive surfaces. Technical Report git-gvu-02-35, Computer Science Department, Georgia Institute of Technology

    Google Scholar 

  49. Haller M, Brandl P, Leithinger D, Leitner J, Seifried T, , Billinghurst M (2006) Shared design space: Sketching ideas using digital pens and a large augmented tabletop setup. Advances in Artificial Reality and Tele-Existence 4282/2006:185–196

    Article  Google Scholar 

  50. Haller M, Brandl P, Leithinger D, Leitner J, Seifried T (2007) Large interactive surfaces based on digital pens. In: Proceedings of the 10th international conference on humans and computers (HC-2007), University of Aizu, Japan, pp 172–177

    Google Scholar 

  51. Leitner J, Powell J, Brandl P, Seifried T, Haller M, Dorray B, To P (2009) Flux: A tilting multi-touch and pen based surface. In: CHI ’09 extended abstracts, ACM Press, New York, pp 3211–3216, doi: 10.1145/1520340.1520459

    Google Scholar 

  52. Morrison GD (2005) A camera-based input device for large interactive displays. IEEE Computer Graphics and Applications 25(4):52–57, doi: 10.1109/MCG.2005.72

    Article  Google Scholar 

  53. Ganser C, Steinemann A, Kunz A (2006) InfrActables: Multi-user tracking system for interactive surfaces. In: Proceedings of the IEEE virtual reality conference, Alexandria, Virginia, USA, pp 253–256, doi: 10.1109/VR.2006.86

    Google Scholar 

  54. Hofer R, Kaplan P, Kunz A (2008) Mighty Trace: Multiuser technology on lcds. In: Proceedings of CHI’08, ACM Press, New York, NY, USA, pp 215–218, doi: 10.1145/1357054.1357091

    Google Scholar 

  55. Hodges S, Izadi S, Butler A, Rrustemi A, Buxton B (2007) Thinsight: Versatile multi-touch sensing for thin form-factor displays. In: Proceedings of the UIST, ACM Press, New York, pp 259–268, doi: 10.1145/1294211.1294258

    Google Scholar 

  56. Parker JK, Mandryk RL, Inkpen KM (2006) Integrating point and touch for interaction with digital tabletop displays. IEEE Computer Graphics and Applications 26(5):28–35

    Article  Google Scholar 

  57. Brandl P, Leitner J, Seifried T, Haller M, Doray B, To P (2009) Occlusion-aware menu design for digital tabletops. In: CHI 2009 extended abstracts, ACM Press, New York, pp 3223–3228, doi: 10.1145/1520340.1520461

    Google Scholar 

  58. Buxton W (1990) A three state model of graphical input. In: Diaper D et al. (eds) Human-computer interaction – INTERACT ’90. Elsevier Science Publishers B.V., North-Holland, pp 449–456

    Google Scholar 

  59. Forlines C, Wigdor D, Shen C, Balakrishnan R (2007) Direct-touch vs. mouse input for tabletop displays. In: Proceedings of the CHI’07, ACM Press, New York, pp 647–656, doi: 10.1145/1240624.1240726

    Google Scholar 

  60. Guiard Y (1987) Asymmetric division of labor in human skilled bimanual action: The kinematic chain as a model. Journal of Motor Behaviour 19(4):486–517

    Google Scholar 

  61. Brandl P, Forlines C, Wigdor D, Haller M, Shen C (2008) Combining and measuring the benefits of bimanual pen and direct-touch interaction on horizontal interfaces. In: Proceedings of the AVI 08, ACM Press, New York, pp 154–161

    Google Scholar 

  62. Krumbholz C, Leigh J, Johnson A, Renambot L, Kooima R (2005) Lambda table: High resolution tiled display table for interacting with large visu-alizations. In: Proceedings of the workshop on advanced collaborative environments (ACE), Redmond, Washington

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Ashdown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London

About this chapter

Cite this chapter

Ashdown, M., Tuddenham, P., Robinson, P. (2010). High-Resolution Interactive Displays. In: Müller-Tomfelde, C. (eds) Tabletops - Horizontal Interactive Displays. Human-Computer Interaction Series. Springer, London. https://doi.org/10.1007/978-1-84996-113-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-113-4_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-112-7

  • Online ISBN: 978-1-84996-113-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics