Skip to main content

Industrial Products for Advanced Control of Mineral Processing Plants

  • Chapter
Advanced Control and Supervision of Mineral Processing Plants

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

This chapter begins with some general observations on the strategic importance automation technologies have acquired in the mining business, and then reviews a series of recently available commercial advanced sensors for grinding and flotation plants. This is followed by a brief look at developments in advanced control and the main concepts involved in the solutions offered. A number of tools for advanced control development are presented and the reported benefits obtained in real-world applications are noted. The chapter ends with conclusions and a brief discussion of current tendencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barría D (2008) Digital Codelco: mining of the future (in spanish). Technological Approach Seminar, Calama (Chile)

    Google Scholar 

  2. Hodouin D, Jamsa-Jounela SL, Carvalho MT, Bergh L (2001) State of the art and challenges in mineral processing control. Control Engineering Practice 9:995–1005

    Article  Google Scholar 

  3. Jamsa-Jounela SL (2001) Current status and future trends in the automation of mineral and metal processing. Control Engineering Practice 9:1021–1035

    Article  Google Scholar 

  4. Yacher L, González C, Von Borries G, Nobile R (1985) Coarse particle size distribution analyze. In H.K. Copper (Ed.), Instrumentation in the Mining and Metallurgy Industries, Instrument Society of America, 12, 71–79

    Google Scholar 

  5. Split Engineering, www.spliteng.com

    Google Scholar 

  6. Metso Minerals,www.metsominerals.com

    Google Scholar 

  7. KnowledgeScape, www.scape.com

    Google Scholar 

  8. Singh V, Rao SM (2005) Application of image processing and radial basis neural network techniques for ore sorting and ore classification. Minerals Engineering 18:1412–1420

    Article  Google Scholar 

  9. WipWare, www.wipware.com

    Google Scholar 

  10. Guyot O, Monredon T, LaRosa D, Broussaud A (2004) VisioRock, an integrated vision technology for advanced control of comminution circuits. Minerals Engineering 17:1227–1235

    Article  Google Scholar 

  11. Kaartinen J, Tolonen A (2008) Utilizing 3D height measurement in particle size analysis. Proceedings of the 17th IFAC World Congress, Seoul (Korea)

    Google Scholar 

  12. Outotec, www.outotec.com

    Google Scholar 

  13. Valderrama WR, Pontt JO, Magne LO, Hernández JS, Salgado FI, Valenzuela JS, Poze RE (2000) The Impactmeter, a new instrument for monitoring and avoiding harmful high-energy impacts on the mill liners in SAG mills. Preprints of IFAC Workshop on Future Trend in Automation in Mineral and Metal Processing, Helsinki (Finland), 274–279

    Google Scholar 

  14. FLSmidth Minerals, www.flsmidthminerals.com

    Google Scholar 

  15. Cipriano A, Guarini M, Vidal R, Soto A, Sepúlveda C, Mery D, Briseño H (1998) A real time visual sensor for supervision of flotation cells. Mineral Engineering 11: 489–499

    Article  Google Scholar 

  16. JKTech Pty Ltd, www.jktech.com.au

    Google Scholar 

  17. Metso Minerals Cisa, www.svedala-cisa.com

    Google Scholar 

  18. Morar S, Forbes G, Heinrich G, Bradshaw D, King D, Adair B, Esdaile L (2005) The use of a colour parameter in a machine vision system, SmartFroth, to evaluate copper flotation performance at Rio Tinto’s Kennecott copper concentrator. Proceedings of the Centenary of Flotation Symposium, Brisbane (Australia)

    Google Scholar 

  19. Kaartinen J, Hatonen J, Hyotyniemi H, Miettunen J (2006) Machine-vision-based control of zinc flotation – A case study. Control Engineering Practice 14:1455–1466

    Article  Google Scholar 

  20. Forbes G (2007) Texture and bubble size measurements for modelling concentrate grade in flotation froth systems. PhD Thesis University of Cape Town, South Africa.

    Google Scholar 

  21. Lin B, Recke B, Knudsen J, Jørgensen S (2008) Bubble size estimation for flotation processes. Minerals Engineering 21:539–548

    Article  Google Scholar 

  22. Liu J, MacGregor J (2008) Froth-based modeling and control of flotation processes. Minerals Engineering 21:642–651

    Article  Google Scholar 

  23. Núñez F, Cipriano A (2008) Visual information model based predictor for froth speed control in flotation process. Minerals Engineering 22(4):366–371

    Article  Google Scholar 

  24. Flores A, Sáez D, Araya J, Berenguel M, Cipriano A (2005). Fuzzy predictive control of a solar power plant. IEEE Transactions on Fuzzy Systems 13(1): 58–68

    Article  Google Scholar 

  25. Cipriano A, González G (2008) Advanced control for mineral processing plants. Lecture at First International Congress on Automation in the Mining Industry, Automining 2008, Santiago (Chile)

    Google Scholar 

  26. Levine W (1995) The Control Handbook. CRC and IEEE Press

    Google Scholar 

  27. Passino K M, Yurkovich S (1998) Fuzzy Control. Addison Wesley

    Google Scholar 

  28. Driankov D, Hellendoorn H, Reinfrank M (1996) An Introduction to Fuzzy Control. Springer

    Google Scholar 

  29. Driankov D, Palm R (1998) Advances in Fuzzy Control. Springer

    Google Scholar 

  30. Mamdani EH (1974) Application of fuzzy algorithms for control of simple dynamics plant. Proceedings of the IEE 121:1585–1588

    Google Scholar 

  31. Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 7(1):1–13

    Article  MATH  Google Scholar 

  32. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics 15(1):116–132

    MATH  Google Scholar 

  33. Tanaka K, Wang H (2001) Fuzzy Control Systems Design and Analysis. John Wiley & Sons

    Google Scholar 

  34. Palm R, Driankov D, Hellendoorn H (1996) Model Based Fuzzy Control. Springer

    Google Scholar 

  35. Babuska R (1998) Fuzzy Modelling for Control. Kluwer Academy Publishers

    Google Scholar 

  36. Aracil J, Gordillo F (2000) Stability Issues in Fuzzy Control. Springer

    Google Scholar 

  37. Abonyi J (2003) Fuzzy Model Identification for Control. Birkhaüser

    Google Scholar 

  38. Camacho F, Bordons C (2005) Model Predictive Control. Springer

    Google Scholar 

  39. Kouvaritakis B, Cannon M. (2001) Nonlinear Predictive Control: Theory and Practice. The Institution of Electrical Engineers, London

    MATH  Google Scholar 

  40. Nørgaard M, Ravn O, Poulsen N, Hansen L (2000) Neural networks for modelling and control of dynamic systems. Springer-Verlag, London

    Google Scholar 

  41. US Patent and Trademark Office, http://patft.uspto.gov

    Google Scholar 

  42. Morari M, Baotic M, Borrelli F (2003) Hybrid systems modeling and control. European Journal of Control 9(2-3):177–189

    Article  Google Scholar 

  43. Qin S, Badgwell T (2003). A survey of industrial model predictive control technology. Control Engineering Practice 11:733–764

    Article  Google Scholar 

  44. Emerson Process Management, www.emersonprocess.com

    Google Scholar 

  45. Rockwell, www.rockwell.com

    Google Scholar 

  46. Pavilion Technologies, www.pavtech.com

    Google Scholar 

  47. ABB, www.abb.com

    Google Scholar 

  48. ABB Process control system patent, European Patent EP1553470, www.freepatentsonline.com

    Google Scholar 

  49. Gaulocher S, Gallestey E (2008) Advanced process control of a froth flotation circuit, Proceedings of the Fifth International Seminar on Mineral Processing, Procemin 2008, Santiago (Chile)

    Google Scholar 

  50. Andritz Ideas Simulation & Control, www.ideas-simulation.com

    Google Scholar 

  51. Zervos C, Dumont G (1988) Deterministic adaptive control on Laguerre series representation. International Journal of Control 48(6):2333–2359

    Article  MATH  MathSciNet  Google Scholar 

  52. Honeywell, www.honeywell.com

    Google Scholar 

  53. Lu Z (1996) Method for optimal controller design for multivariable predictive control utilizing range control. US Patent No 5.572.420,

    Google Scholar 

  54. Krishnan A, Kosanovich K, DeWitt M, Creec M (1998) Robust model predictive control of an industrial solid phase polymerizer. Proceedings of the American Control Conference, Philadelphia (USA)

    Google Scholar 

  55. Mathur A, Parthasarathy S, Gaikwad S (1999). Hybrid neural network multivariable predictive controller for handling abnormal events in processing applications. Proceedings of the 1999 IEEE International Conference on Control Applications, Hawai (USA)

    Google Scholar 

  56. Invensys, www.invensys.com

    Google Scholar 

  57. Nix A, Morrow A, Gordon L (2000). Using multivariable predictive control to optimize the Asarco Mission mill. In J. A. Hebst (Ed.), Proceedings of Control 2000, SME Annual Meeting, Littleton (USA), 201–207

    Google Scholar 

  58. Mintek, www.mintek.com

    Google Scholar 

  59. Craig L, Henning R (2000) Evaluation of advanced industrial control projects: a framework for determining economic benefits. Control Engineering Practice 8: 769–780

    Article  Google Scholar 

  60. Roseman L., Schubert J, Jart J, Carew W (2001) Plantstar 2000: a plant – wide control platform for mineral processing, Minerals Engineering 14: 593–600

    Article  Google Scholar 

  61. SGS, www.sgs.com

    Google Scholar 

  62. Gensym, www.gensym.com

    Google Scholar 

  63. Keaton M, Wood M, Schaffer M (2002) Application at Ok Tedi Mining of a neural network model within the expert system for SAG mill control. SGS Internal Report, www.met.sgs.com

    Google Scholar 

  64. Cipriano A, González G, Sbarbaro D (2007) Final Report Project Amira P893A, Training in Automation for optimizing the profitability of technological investments

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Cipriano, A. (2010). Industrial Products for Advanced Control of Mineral Processing Plants. In: Sbárbaro, D., del Villar, R. (eds) Advanced Control and Supervision of Mineral Processing Plants. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-84996-106-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-106-6_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-105-9

  • Online ISBN: 978-1-84996-106-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics