Advertisement

Image Measurement Errors in Visual Servoing: Estimating the Induced Positioning Error

  • Graziano Chesi
  • Yeung Sam Hung
  • Ho Lam Yung
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 401)

Abstract

The goal of a visual servo system is to position a robot end-effector by progressively adjusting its location so that some object features in the current image match the same features in a desired image previously recorded. However, this matching in the image domain cannot be ensured due to unavoidable presence of image measurement errors, and even when it is realized, there is no guarantee that the robot end-effector has reached the desired location since the available image measurements are corrupted. The aim of this chapter is to present a strategy for bounding the worst-case robot positioning error introduced by image measurement errors. In particular, two methods are described, which allow one to compute upper and lower bounds of this positioning error. Some examples illustrate the proposed methods with synthetic and real data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allotta, B., Fioravanti, D.: 3D motion planning for image-based visual servoing tasks. In: Proc. IEEE Int. Conf. on Robotics and Automation, Barcelona, Spain (2005)Google Scholar
  2. 2.
    Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)zbMATHGoogle Scholar
  3. 3.
    Chaumette, F.: Potential problems of stability and convergence in image-based and position-based visual servoing. In: Kriegman, D., Hager, G., Morse, A. (eds.) The confluence of vision and control, pp. 66–78. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Chaumette, F., Hutchinson, S.: Visual servo control, part I: Basic approaches. IEEE Robotics and Automation Magazine 13(4), 82–90 (2006)CrossRefGoogle Scholar
  5. 5.
    Chaumette, F., Hutchinson, S.: Visual servo control, part II: Advanced approaches. IEEE Robotics and Automation Magazine 14(1), 109–118 (2007)CrossRefGoogle Scholar
  6. 6.
    Chesi, G.: Visual servoing path-planning via homogeneous forms and LMI optimizations. IEEE Trans. on Robotics 25(2), 281–291 (2009)CrossRefGoogle Scholar
  7. 7.
    Chesi, G., Garulli, A., Tesi, A., Vicino, A.: Solving quadratic distance problems: an LMI-based approach. IEEE Trans. on Automatic Control 48(2), 200–212 (2003)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Chesi, G., Garulli, A., Tesi, A., Vicino, A.: Homogeneous Polynomial Forms for Robustness Analysis of Uncertain Systems. Springer, Heidelberg (2009)zbMATHCrossRefGoogle Scholar
  9. 9.
    Chesi, G., Hashimoto, K., Prattichizzo, D., Vicino, A.: Keeping features in the field of view in eye-in-hand visual servoing: a switching approach. IEEE Trans. on Robotics 20(5), 908–913 (2004)CrossRefGoogle Scholar
  10. 10.
    Chesi, G., Hung, Y.S.: Global path-planning for constrained and optimal visual servoing. IEEE Trans. on Robotics 23(5), 1050–1060 (2007)CrossRefGoogle Scholar
  11. 11.
    Chesi, G., Hung, Y.S.: Image noise induced errors in camera positioning. IEEE Trans. on Pattern Analysis and Machine Intelligence 29(8), 1476–1480 (2007)CrossRefGoogle Scholar
  12. 12.
    Chesi, G., Prattichizzo, D., Vicino, A.: Straight line path-planning in visual servoing. Journal of Dynamic Systems, Measurement and Control 129(4), 541–543 (2007)CrossRefGoogle Scholar
  13. 13.
    Chesi, G., Tesi, A., Vicino, A., Genesio, R.: On convexification of some minimum distance problems. In: European Control Conf. Karlsruhe, Germany (1999)Google Scholar
  14. 14.
    Chesi, G., Vicino, A.: Visual servoing for large camera displacements. IEEE Trans. on Robotics 20(4), 724–735 (2004)CrossRefGoogle Scholar
  15. 15.
    Chesi, G., Yung, H.L.: Performance limitation analysis in visual servo systems: bounding the location error introduced by image points matching. In: IEEE Int. Conf. on Robotics and Automation, Kobe, Japan, pp. 695–700 (2009)Google Scholar
  16. 16.
    Corke, P.I., Hutchinson, S.: A new partitioned approach to image-based visual servo control. IEEE Trans. on Robotics and Automation 17(4), 507–515 (2001)CrossRefGoogle Scholar
  17. 17.
    Cowan, N.J., Chang, D.E.: Geometric visual servoing. IEEE Trans. on Robotics 21(6), 1128–1138 (2005)CrossRefGoogle Scholar
  18. 18.
    Gans, N., Hutchinson, S.: Stable visual servoing through hybrid switched-system control. IEEE Trans. on Robotics 23(3), 530–540 (2007)CrossRefGoogle Scholar
  19. 19.
    Hashimoto, K.: A review on vision-based control of robot manipulators. Advanced Robotics 17(10), 969–991 (2003)CrossRefGoogle Scholar
  20. 20.
    Hashimoto, K., Kimoto, T., Ebine, T., Kimura, H.: Manipulator control with image-based visual servo. In: Proc. IEEE Int. Conf. on Robotics and Automation, pp. 2267–2272 (1991)Google Scholar
  21. 21.
    Hutchinson, S., Hager, G., Corke, P.: A tutorial on visual servo control. IEEE Trans. on Robotics and Automation 12(5), 651–670 (1996)CrossRefGoogle Scholar
  22. 22.
    Kyrki, V.: Control uncertainty in image-based visual servoing. In: Proc. IEEE Int. Conf. on Robotics and Automation, Kobe, Japan, pp. 1516–1521 (2009)Google Scholar
  23. 23.
    Kyrki, V., Kragic, D., Christensen, H.: Measurement errors in visual servoing. In: Proc. IEEE Int. Conf. on Robotics and Automation, New Orleans, Louisiana, pp. 1861–1867 (2004)Google Scholar
  24. 24.
    Malis, E.: Visual servoing invariant to changes in camera-intrinsic parameters. IEEE Trans. on Robotics and Automation 20(1), 72–81 (2004)CrossRefGoogle Scholar
  25. 25.
    Malis, E., Chaumette, F., Boudet, S.: 2 1/2 D visual servoing. IEEE Trans. on Robotics and Automation 15(2), 238–250 (1999)CrossRefGoogle Scholar
  26. 26.
    Mezouar, Y., Chaumette, F.: Path planning for robust image-based control. IEEE Trans. on Robotics and Automation 18(4), 534–549 (2002)CrossRefGoogle Scholar
  27. 27.
    Park, J., Chung, M.: Path planning with uncalibrated stereo rig for image-based visual servoing under large pose discrepancy. IEEE Trans. on Robotics and Automation 19(2), 250–258 (2003)CrossRefGoogle Scholar
  28. 28.
    Schramm, F., Morel, G.: Ensuring visibility in calibration-free path planning for image-based visual servoing. IEEE Trans. on Robotics 22(4), 848–854 (2006)CrossRefGoogle Scholar
  29. 29.
    Tahri, O., Chaumette, F.: Point-based and region-based image moments for visual servoing of planar objects. IEEE Trans. on Robotics 21(6), 1116–1127 (2005)CrossRefGoogle Scholar
  30. 30.
    Thuilot, B., Martinet, P., Cordesses, L., Gallice, J.: Position based visual servoing: keeping the object in the field of vision. In: Proc. IEEE Int. Conf. on Robotics and Automation, Washington, D.C, pp. 1624–1629 (2002)Google Scholar

Copyright information

© Springer London 2010

Authors and Affiliations

  • Graziano Chesi
    • 1
  • Yeung Sam Hung
    • 1
  • Ho Lam Yung
    • 1
  1. 1.Department of Electrical and Electronic EngineeringUniversity of Hong KongHong Kong

Personalised recommendations