Advertisement

A Variational Approach to Trajectory Planning in Visual Servoing

  • Youcef Mezouar
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 401)

Abstract

One deficiency of image-based servo is that the induced 3D trajectories are not optimal and sometimes, especially when the displacements to realize is large, these trajectories are not physically valid leading to the failure of the servoing process. In this chapter, we address the problem of generating trajectories of some image features that corresponds to optimal 3D trajectories in order to control efficiently a robotic system using an image-based control strategy. First, a collineation path between given start and end points is obtained and then the trajectories of the image features are derived. Path planning is formulate as a variational problem which allows to consider simultaneously optimality and inequality constraints (visibility). A numerical method is employed for solving the path-planning problem in the variational form.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chaumette, F.: Potential problems of stability and convergence in image-based and position-based visual servoing. In: Kriegman, D., Hager, G., Morse, A. (eds.) The Confluence of Vision and Control. LNCIS, vol. 237, pp. 66–78. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Chaumette, F., Hutchinson, S.: Visual servo control, part i: Basic approaches. IEEE Robotics and Automation Magazine 13(4), 82–90 (2006)CrossRefGoogle Scholar
  3. 3.
    Chaumette, F., Hutchinson, S.: Visual servo control, part ii: Advanced approaches. IEEE Robotics and Automation Magazine 14(1), 109–118 (2007)CrossRefGoogle Scholar
  4. 4.
    Chesi, G., Malis, E., Cipolla., R.: Automatic segmentation and matching of planar contours for visual servoing. In: International Conference on Robotics and Automation, San Francisco (2000)Google Scholar
  5. 5.
    Chesi, G., Prattichizzo, D., Vicino, A.: Straight line path-planning in visual servoing. Journal of Dynamic Systems, Measurement and Control 129(4), 541–543 (2007)CrossRefGoogle Scholar
  6. 6.
    Chesi, G., Vicino, A.: Visual servoing for large camera displacements. IEEE Transactions on Robotics 20(4), 724–735 (2004)CrossRefGoogle Scholar
  7. 7.
    Corke, P.I., Hutchinson, S.A.: A new partitioned approach to image-based visual servo control. IEEE Transaction on Robotics and Automation 17(4), 507–515 (2001)CrossRefGoogle Scholar
  8. 8.
    Cowan, N., Lopes, G., Koditschek, D.: Rigid body visual servoing using navigation functions. In: IEEE Int. Conf. on Decision and Control, Sydney, Australia, pp. 3920–3926 (2000)Google Scholar
  9. 9.
    Deguchi, K.: Optimal motion control for image-based visual servoing by decoupling translation and rotation. In: IEEE/RSJ International Conference on Intelligent Robots Systems, Victoria, BC, Canada, vol. 2, pp. 705–711 (1998)Google Scholar
  10. 10.
    Faugeras, O.: Three-dimensionnal computer vision: a geometric view point. MIT Press, Cambridge (1993)Google Scholar
  11. 11.
    Faugeras, O., Lustman, F.: Motion and structure from motion in a piecewise planar environment. Int. Journal of Pattern Recognition and Artificial Intelligence 2(3), 485–508 (1988)CrossRefGoogle Scholar
  12. 12.
    Fomena, R.T., Chaumette, F.: Visual servoing from spheres using a spherical projection model. In: IEEE International Conference on Robotics and Automation, ICRA 2007, Roma, Italia, pp. 2080–2085 (2007)Google Scholar
  13. 13.
    Gregory, J., Lin, C.: Constrained optimization in the calculus of variations and optimal control theory. Van Nostrand Reinhold, New York (1992)zbMATHGoogle Scholar
  14. 14.
    Hamel, T., Mahony, R.: Visual servoing of an under-actuated dynamic rigid body system: an image-based approach. IEEE Transaction on Robotics and Automation 18(2), 187–198 (2002)CrossRefGoogle Scholar
  15. 15.
    Hashimoto, K., Noritugu, T.: Potential switching control in visual servo. In: IEEE Int. Conf. on Robotics and Automation, San Francisco, USA, pp. 2765–2770 (2000)Google Scholar
  16. 16.
    Hosoda, K., Sakamoto, K., Asada, M.: Trajectory generation for obstacle avoidance of uncalibrated stereo visual servoing without 3d reconstruction. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems 1(3), 29–34 (1995)Google Scholar
  17. 17.
    Iwatsuki, M., Okiyama, N.: A new formulation of visual servoing based on cylindrical coordinate system. IEEE Transactions on Robotics 21(2), 266–273 (2005)CrossRefGoogle Scholar
  18. 18.
    Lee, J.S., Suh, I., You, B.J., Oh, S.R.: A novel visual servoing approach involving disturbance observer. In: IEEE International Conference on Robotics and Automation, ICRA 1999, Detroit, Michigan, pp. 269–274 (1999)Google Scholar
  19. 19.
    Mahony, R., Corke, P., Chaumette, F.: Choice of image features for depth-axis control in image-based visual servo control. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS 2002, Lausanne, Switzerland, vol. 1, pp. 390–395 (2002)Google Scholar
  20. 20.
    Malis, E., Chaumette, F.: 2 1/2 d visual servoing with respect to unknown objects through a new estimation scheme of camera displacement. International Journal of Computer Vision 37(1), 79–97 (2000)zbMATHCrossRefGoogle Scholar
  21. 21.
    Malis, E., Chesi, G., Cipolla, R.: 2 1/2 d visual servoing with respect to planar contours having complex and unknown shapes. International Journal of Robotics Research, Special Issue on Visual Servoing 22(10-11), 841–853 (2003)Google Scholar
  22. 22.
    Mezouar, Y., Chaumette, F.: Path planning for robust image-based control. IEEE Trans. on Robotics and Automation 18(4), 534–549 (2002)CrossRefGoogle Scholar
  23. 23.
    Mezouar, Y., Chaumette, F.: Optimal camera trajectory with image-based control. Int. Journal of Robotics Research, IJRR 22(10), 781–804 (2003)CrossRefGoogle Scholar
  24. 24.
    Mezouar, Y., Malis, E.: Robustness of central catadioptric image-based visual servoing to uncertainties on 3d parameters. In: IEEE/RSJ International Conference on Intelligent Robots Systems, pp. 1389–1394 (2004)Google Scholar
  25. 25.
    Ruf, A., Horaud, R.: Visual trajectories from uncalibrated stereo. In: IEEE Int. Conf. on Intelligent Robots and Systems, pp. 83–91 (1997)Google Scholar
  26. 26.
    Singh, R., Voyle, R.M., Littau, D., Papanikolopoulos, N.P.: Alignement of an eye-in-hand system to real objects using virtual images, Leuven, Belgium (1998)Google Scholar
  27. 27.
    Tahri, O., Chaumette, F., Mezouar, Y.: New decoupled visual servoing scheme based on invariants from projection onto a sphere. In: IEEE International Conference on Robotics and Automation, ICRA 2008, Pasadena, California, USA, pp. 3238–3243 (2008)Google Scholar
  28. 28.
    Zefran, M., Kumar., V.: Optimal control of systems with unilateral constraints. In: IEEE International Conference on Robotics and Automation, Nagoya, Japan, pp. 2695–2700 (1995)Google Scholar
  29. 29.
    Zhang, H., Ostrowski, J.: Optimal motion planning in the image plane for mobile robots. In: IEEE Int. Conf. on Robotics and Automation, San Francisco, USA, pp. 3811–3816 (2000)Google Scholar
  30. 30.
    Zhang, Z., Hanson, A.R.: Scaled euclidean 3d reconstruction based on externally uncalibrated cameras. In: IEEE Symposium on Computer Vision, Coral Gables, FL (1995)Google Scholar

Copyright information

© Springer London 2010

Authors and Affiliations

  • Youcef Mezouar
    • 1
  1. 1.LASMEAUniversity Blaise PascalAubiereFrance

Personalised recommendations