Advertisement

Points-based Visual Servoing with Central Cameras

  • Hicham Hadj-Abdelkader
  • Youcef Mezouar
  • Philippe Martinet
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 401)

Abstract

This chapter concerns hybrid visual servoing schemes from a set of points viewed by central camera. The main purpose is to decouple the velocity commands in order to obtain an adequate camera trajectory. The proposed schemes are modelfree since they are based on the homography matrix between two views. The rotational motions are controlled using the estimated orientation between the current and the desired positions of the robot, while the translational motions are controlled using the combination between image points (onto the sphere or into the normalized plane) and 3D information extracted from the homography matrix. Real-time experimental results with a cartesian manipulator robot are presented and show clearly the decoupling properties of the proposed approaches.

Keywords

Interaction Matrix Task Function Visual Servoing Central Camera Homography Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barreto, J., Araujo, H.: Geometric properties of central catadioptric line images. In: 7th European Conference on Computer Vision, Copenhagen, Denmark, pp. 237–251 (2002)Google Scholar
  2. 2.
    Cervera, E., Pobil, A.P.D., Berry, F., Martinet, P.: Improving image-based visual servoing with three-dimensional features. International Journal of Robotics Research 22(10-11), 821–840 (2003)Google Scholar
  3. 3.
    Chaumette, F.: Potential problems of stability and convergence in image-based and position-based visual servoing. In: Kriegman, D., Hager, G., Morse, A. (eds.) The Confluence of Vision and Control. LNCIS, vol. 237, pp. 66–78. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Chaumette, F.: Image moments: A general and useful set of features for visual servoing. IEEE Transaction on Robotics and Automation 20(4), 713–723 (2004)Google Scholar
  5. 5.
    Corke, P.I., Hutchinson, S.A.: A new partitioned approach to image-based visual servo control. IEEE Transaction on Robotics and Automation 17(4), 507–515 (2001)CrossRefGoogle Scholar
  6. 6.
    Courbon, J., Mezouar, Y., Eck, L., Martinet, P.: A generic fisheye camera model for robotic applications. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, California, USA, pp. 1683–1688 (2007)Google Scholar
  7. 7.
    Espiau, B., Chaumette, F., Rives, P.: A new approach to visual servoing in robotics. IEEE Transaction on Robotics and Automation 8(3), 313–326 (1992)CrossRefGoogle Scholar
  8. 8.
    Faugeras, O., Lustman, F.: Motion and structure from motion in a piecewise planar environment. International Journal of Pattern Recognition and Artificial Intelligence 2(3), 485–508 (1988)CrossRefGoogle Scholar
  9. 9.
    Geyer, C., Daniilidis, K.: A unifying theory for central panoramic systems and practical implications. In: European Conference on Computer Vision, Dublin, Ireland, pp. 159–179 (2000)Google Scholar
  10. 10.
    Geyer, C., Daniilidis, K.: Mirrors in motion: Epipolar geometry and motion estimation. In: International Conference on Computer Vision, Nice, France, pp. 766–773 (2003)Google Scholar
  11. 11.
    Hadj-Abdelkader, H., Mezouar, Y., Andreff, N., Martinet, P.: 2 1/2 d visual servoing with central catadioptric cameras. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Canada, pp. 2342–2347 (2005)Google Scholar
  12. 12.
    Hamel, T., Mahony, R.: Visual servoing of an under-actuated dynamic rigid body system: an image-based approach. IEEE Transaction on Robotics and Automation 18(2), 187–198 (2002)CrossRefGoogle Scholar
  13. 13.
    Iwatsuki, M., Okiyama, N.: A new formulation of visual servoing based on cylindrical coordinates system with shiftable origin. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, pp. 266–273 (2002)Google Scholar
  14. 14.
    Lee, J.S., Suh, I., You, B.J., Oh, S.R.: A novel visual servoing approach involving disturbance observer. In: IEEE International Conference on Robotics and Automation, Detroit, Michigan, pp. 269–274 (1999)Google Scholar
  15. 15.
    Malis, E., Chaumette, F.: 2 1/2 d visual servoing with respect to unknown objects through a new estimation scheme of camera displacement. International Journal of Computer Vision 37(1), 79–97 (2000)zbMATHCrossRefGoogle Scholar
  16. 16.
    Malis, E., Chaumette, F.: Theoretical improvements in the stability analysis of a new class of model-free visual servoing methods. IEEE Transaction on Robotics and Automation 18(2), 176–186 (2002)CrossRefGoogle Scholar
  17. 17.
    Malis, E., Chaumette, F., Boudet, S.: 2 1/2 d visual servoing. IEEE Transaction on Robotics and Automation 15(2), 238–250 (1999)CrossRefGoogle Scholar
  18. 18.
    Marchand, E., Spindler, F., Chaumette, F.: Visp for visual servoing: a generic software platform with a wide class of robot control skills. IEEE Robotics and Automation Magazine 12(4), 40–52 (2005)CrossRefGoogle Scholar
  19. 19.
    Martinet, P., Daucher, N., Gallice, J., Dhome, M.: Robot control using 3d monocular pose estimation. In: Workshop on New Trends in Image Based Robot Servoing, IEEE/RSJ International Conference on Intelligent Robots and Systems, Grenoble, France, pp. 1–12 (1997)Google Scholar
  20. 20.
    Mezouar, Y., Chaumette, F.: Path planning for robust image-based control. IEEE Transaction on Robotics and Automation 18(4), 534–549 (2002)CrossRefGoogle Scholar
  21. 21.
    Rives, P., Azinheira, J.: Linear structures following by an airship using vanishing points and horizon line in a visual servoing scheme. In: IEEE International Conference on Robotics and Automation, New Orleans, Louisiana, pp. 255–260 (2004)Google Scholar
  22. 22.
    Samson, C., Espiau, B., Borgne, M.L.: Robot Control: The Task Function Approach. Oxford University Press, Oxford (1991)Google Scholar
  23. 23.
    Svoboda, T., Pajdla, T., Hlavac, V.: Motion estimation using central panoramic cameras. In: IEEE Conference on Intelligent Vehicles, Stuttgart, Germany, pp. 335–340 (1998)Google Scholar
  24. 24.
    Tahri, O., Chaumette, F., Mezouar, Y.: New decoupled visual servoing scheme based on invariants projection onto a sphere. In: IEEE International Conference on Robotics and Automation, Pasadena, CA, pp. 3238–3243 (2008)Google Scholar
  25. 25.
    Tatsambon Fomena, R., Chaumette, F.: Visual servoing from spheres using a spherical projection model. In: IEEE International Conference on Robotics and Automation, Roma, Italia, pp. 2080–2085 (2007)Google Scholar
  26. 26.
    Thuilot, B., Martinet, P., Cordesses, L., Gallice, J.: Position based visual servoing: keeping the object in the field of vision. In: IEEE International Conference on Robotics and Automation, Washington DC, USA, pp. 1624–1629 (2002)Google Scholar
  27. 27.
    Wilson, W., Hulls, C.W., Bell, G.: Relative end-effector control using cartesian position-based visual servoing. IEEE Transaction on Robotics and Automation 12(5), 684–696 (1996)CrossRefGoogle Scholar
  28. 28.
    Zhang, Z., Hanson, A.R.: Scaled euclidean 3d reconstruction based on externally uncalibrated cameras. In: IEEE Symposium on Computer Vision, Coral Gables, FL, pp. 37–42 (1995)Google Scholar

Copyright information

© Springer London 2010

Authors and Affiliations

  • Hicham Hadj-Abdelkader
    • 1
  • Youcef Mezouar
    • 1
  • Philippe Martinet
    • 1
  1. 1.LASMEAUniversity Blaise PascalAubiereFrance

Personalised recommendations