Advertisement

Visual Servoing and Pose Estimation with Cameras Obeying the Unified Model

  • Omar Tahri
  • Youcef Mezouar
  • François Chaumette
  • Helder Araujo
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 401)

Abstract

In this chapter, both visual servoing and pose estimation from a set of points are dealt with. More precisely, a unique scheme based on the projection onto the unit sphere for cameras obeying the unified model is proposed. From the projection onto the surface of the unit sphere, new visual features based on invariants to rotations are proposed. It is shown that satisfactory results can be obtained using these features for visual servoing and pose estimation as well.

Keywords

Unit Sphere Visual Feature Interaction Matrix Translational Velocity Feature Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ansar, A., Daniilidis, K.: Linear pose estimation from points or lines. IEEE Trans. on Pattern Analysis and Machine Intelligence 25, 282–296 (2003)CrossRefGoogle Scholar
  2. 2.
    Araujo, H., Carceroni, R.L., Brown, C.M.: A fully projective formulation to improve the accuracy of lowe’s pose-estimation algorithm. Computer Vision and Image Understanding 70, 227–238 (1998)CrossRefGoogle Scholar
  3. 3.
    Baker, S., Nayar, S.: A theory of catadioptric image formation. Int. Journal of Computer Vision 35(2), 175–196 (1999)CrossRefGoogle Scholar
  4. 4.
    Barreto, J., Araujo, H.: Issues on the geometry of central catadioptric image formation. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 2, pp. II-422–II-427 (2001)Google Scholar
  5. 5.
    Chaumette, F.: Potential problems of stability and convergence in image-based and position-based visual servoing. In: Kriegman, D., Hager, G., Morse, A. (eds.) The Confluence of Vision and Control. LNCIS, vol. 237, pp. 66–78. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Corke, P.I., Hutchinson, S.A.: A new partitioned approach to image-based visual servo control. IEEE Trans. on Robotics and Automation 17(4), 507–515 (2001)CrossRefGoogle Scholar
  7. 7.
    Dementhon, D., Davis, L.: Model-based object pose in 25 lines of code. Int. Journal of Computer Vision 15(1-2), 123–141 (1995)CrossRefGoogle Scholar
  8. 8.
    Dhome, M., Richetin, M., Lapreste, J.T., Rives, G.: Determination of the attitude of 3d objects from a single perspective view. IEEE Trans. on Pattern Analysis and Machine Intelligence 11(12), 1265–1278 (1989)CrossRefGoogle Scholar
  9. 9.
    Espiau, B., Chaumette, F., Rives, P.: A new approach to visual servoing in robotics. IEEE Trans. on Robotics and Automation 8, 313–326 (1992)CrossRefGoogle Scholar
  10. 10.
    Fiore, P.: Efficient linear solution of exterior orientation. IEEE Trans. on Pattern Analysis and Machine Intelligence 23(2), 140–148 (2001)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Fomena, R., Chaumette, F.: Visual servoing from spheres using a spherical projection model. In: IEEE International Conference on Robotics and Automation, 2007, pp. 2080–2085 (2007)Google Scholar
  12. 12.
    Geyer, C., Daniilidis, K.: Mirrors in motion: Epipolar geometry and motion estimation. Int. Journal on Computer Vision 45(3), 766–773 (2003)Google Scholar
  13. 13.
    Hamel, T., Mahony, R.: Visual servoing of an under-actuated dynamic rigid body system: an image-based approach. IEEE Trans. on Robotics and Automation 18(2), 187–198 (2002)CrossRefGoogle Scholar
  14. 14.
    Iwatsuki, M., Okiyama, N.: A new formulation of visual servoing based on cylindrical coordinates system with shiftable origin. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Lausanne, Switzerland, pp. 354–359 (2002)Google Scholar
  15. 15.
    Lee, J.S., Suh, I., You, B.J., Oh, S.R.: A novel visual servoing approach involving disturbance observer. In: IEEE Int. Conf. on Robotics and Automation, ICRA 1999, Detroit, Michigan, pp. 269–274 (1999)Google Scholar
  16. 16.
    Lowe, D.G.: Fitting parameterized three-dimensional models to images. IEEE Trans. on Pattern Analysis and Machine Intelligence 13, 441–450 (1991)CrossRefGoogle Scholar
  17. 17.
    Lu, C.P., Hager, G., Mjolsness, E.: Fast and globally convergent pose estimation from video images. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(6), 610–622 (2000)CrossRefGoogle Scholar
  18. 18.
    Mahony, R., Corke, P., Chaumette, F.: Choice of image features for depth-axis control in image-based visual servo control. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS 2002, Lausanne, Switzerland, vol. 1, pp. 390–395 (2002)Google Scholar
  19. 19.
    Malis, E., Chaumette, F., Boudet, S.: 2 1/2 d visual servoing. IEEE Trans. on Robotics and Automation 15(2), 238–250 (1999)CrossRefGoogle Scholar
  20. 20.
    Marchand, E., Chaumette, F.: Virtual visual servoing: A framework for real-time augmented reality. In: Drettakis, G., Seidel, H.P. (eds.) EUROGRAPHICS 2002 Conference Proceeding, Computer Graphics Forum, Saarebrücken, Germany, vol. 21(3), pp. 289–298 (2002)Google Scholar
  21. 21.
    Martinet, P., Gallice, J.: Position based visual servoing using a nonlinear approach. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS 1999, Kyongju, Korea, vol. 1, pp. 531–536 (1999)Google Scholar
  22. 22.
    Mei, C., Rives, P.: Single view point omnidirectional camera calibration from planar grids. In: 2007 IEEE International Conference on Robotics and Automation, pp. 3945–3950 (2007)Google Scholar
  23. 23.
    Mukundan, R., Ramakrishnan, K.R.: Moment Functions in Image Analysis Theory and Application. M. World Scientific Publishing, Co. Pte. Ltd., Singapore (1998)Google Scholar
  24. 24.
    Rives, P., Azinheira, J.: Linear structures following by an airship using vanishing points and horizon line in a visual servoing scheme. In: IEEE Int. Conf. on Robotics and Automation, ICRA 2004, New Orleans, Louisiana, pp. 255–260 (2004)Google Scholar
  25. 25.
    Safaee-Rad, R., Tchoukanov, I., Smith, K., Benhabib, B.: Three-dimensional location estimation of circular features for machine vision. IEEE Trans. onRobotics and Automation 8(5), 624–640 (1992)CrossRefGoogle Scholar
  26. 26.
    Sundareswaran, V., Behringer, R.: Visual servoing-based augmented reality. In: IWAR 1998: Proceedings of the international workshop on Augmented reality: placing artificial objects in real scenes, pp. 193–200. A. K. Peters, Ltd., Natick (1999)Google Scholar
  27. 27.
    Svoboda, T., Pajdla, T.: Epipolar geometry for central catadioptric cameras. Int. Journal on Computer Vision 49(1), 23–37 (2002)zbMATHCrossRefGoogle Scholar
  28. 28.
    Tahri, O.: Utilisation des moments en asservissement visuel et en calcul de pose. Ph.D. thesis, University of Rennes (2004)Google Scholar
  29. 29.
    Tahri, O., Chaumette, F.: Complex objects pose estimation based on image moment invariants. In: IEEE Int. Conf. on Robotics and Automation, ICRA 2005, Barcelona, Spain, pp. 438–443 (2005)Google Scholar
  30. 30.
    Tahri, O., Chaumette, F.: Point-based and region-based image moments for visual servoing of planar objects. IEEE Transactions on Robotics 21(6), 1116–1127 (2005)CrossRefGoogle Scholar
  31. 31.
    Tahri, O., Chaumette, F., Mezouar, Y.: New decoupled visual servoing scheme based on invariants from projection onto a sphere. In: IEEE Int. Conf. on Robotics and Automation, ICRA 2008, pp. 3238–3243 (2008)Google Scholar
  32. 32.
    Teh, C., Chin, R.T.: On image analysis by the method of moments. IEEE Trans. on Pattern Analysis and Machine Intelligence 10(4), 496–513 (1988)zbMATHCrossRefGoogle Scholar
  33. 33.
    Wilson, W., Hulls, C., Bell, G.: Relative end-effector control using cartesian position-based visual servoing. IEEE Trans. on Robotics and Automation 12(5), 684–696 (1996)CrossRefGoogle Scholar

Copyright information

© Springer London 2010

Authors and Affiliations

  • Omar Tahri
    • 1
  • Youcef Mezouar
    • 2
  • François Chaumette
    • 3
  • Helder Araujo
    • 1
  1. 1.Institute for Systems and RoboticsCoimbraPortugal
  2. 2.LASMEAUniversity Blaise PascalAubiereFrance
  3. 3.INRIARennesFrance

Personalised recommendations