Advertisement

Path-Planning for Visual Servoing: A Review and Issues

  • Moslem Kazemi
  • Kamal Gupta
  • Mehran Mehrandezh
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 401)

Abstract

In this survey we provide a comprehensive technical review of existing major approaches to path-planning for visual servoing. Visual servoing has been introduced as a promising approach for sensor-based robotic tasks. The basic visual servoing task is to guide the motion of a robot with respect to a target object based on the feedback obtained through a vision system. Amalgamation of path-planning techniques with reactive visual servoing strategies can robustify existing image-based tracking systems in robotics applications where a high disparity between the initial and desired views of a target is inevitable (e.g., target interception, space docking, reaching and grasping, etc). The planning stage does so by accounting for critical constraints and uncertainties in the system resulting in a more robust visual servoing process. We discuss different planning approaches, explain the associated set of constraints and assumptions, and discuss the underlying pathplanning techniques along with the issues regarding their integration with reactive visual servo controllers.

Keywords

Path Planning Image Space Visual Servoing Visual Servo Control Visibility Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allotta, B., Fioravanti, D.: 3D motion planning for image-based visual servoing tasks. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 2173–2178 (2005)Google Scholar
  2. 2.
    Baumann, M., Dupuis, D., Leonard, S., Croft, E., Little, J.: Occlusion-free path planning with a probabilistic roadmap. In: Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., pp. 2151–2156 (2008)Google Scholar
  3. 3.
    Bhattacharya, S., Murrieta-Cid, R., Hutchinson, S.: Optimal paths for landmark-based navigation by differential-drive vehicles with field-of-view constraints. IEEE Trans. Robot. 23(1), 47–59 (2007)CrossRefGoogle Scholar
  4. 4.
    Borgstadt, J., Ferrier, N.: Visual servoing: path interpolation by homography decomposition. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 723–730 (2001)Google Scholar
  5. 5.
    Censi, A., Calisi, D., Luca, A., Oriolo, G.: A Bayesian framework for optimal motion planning with uncertainty. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 1798–805 (2008)Google Scholar
  6. 6.
    Chaumette, F.: Potential problems of stability and convergence in image-based and position-based visual servoing. In: Kriegman, D., Hager, G., Morse, A. (eds.) Confluence of Vision and Control, pp. 66–78. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Chaumette, F., Hutchinson, S.: Visual servo control Part I: Basic approaches. IEEE Robot. Autom. Mag. 13(4), 82–90 (2006)CrossRefGoogle Scholar
  8. 8.
    Chaumette, F., Hutchinson, S.: Visual servo control Part II: Advanced approaches. IEEE Robot. Autom. Mag. 14(1), 109–118 (2007)CrossRefGoogle Scholar
  9. 9.
    Chesi, G.: Desigining image trajectoris in the presence of uncertain data for robust visual servoing path planning. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 1492–1497 (2009)Google Scholar
  10. 10.
    Chesi, G.: Visual servoing path planning via homogeneous forms and LMI optimizations. IEEE Trans. Robot. 25(2), 281–291 (2009)CrossRefGoogle Scholar
  11. 11.
    Chesi, G., Hashimoto, K., Prattichizzo, D., Vicino, A.: Keeping features in the field of view in eye-in-hand visual servoing: a switching approach. IEEE Trans. Robot. 20(5), 908–914 (2004)CrossRefGoogle Scholar
  12. 12.
    Chesi, G., Hung, Y.: Global path-planning for constrained and optimal visual servoing. IEEE Trans. Robot. 23(5), 1050–1060 (2007)CrossRefGoogle Scholar
  13. 13.
    Chesi, G., Malis, E., Cipolla, R.: Automatic segmentation and matching of planar contours for visual servoing. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 2753–2758 (2000)Google Scholar
  14. 14.
    Chesi, G., Prattichizzo, D., Vicino, A.: Straight line path-planning in visual servoing. Trans. ASME, J. Dyn. Syst. Meas. Control 129(4), 541–543 (2007)CrossRefGoogle Scholar
  15. 15.
    Comport, A., Marchand, E., Pressigout, M., Chaumette, F.: Real-time markerless tracking for augmented reality: the virtual visual servoing framework. IEEE Trans. Vis. Comput. Graphics 12(4), 615–628 (2006)CrossRefGoogle Scholar
  16. 16.
    Corke, P., Hutchinson, S.: A new partitioned approach to image-based visual servo control. IEEE Trans. Robot. Autom. 17(4), 507–515 (2001)CrossRefGoogle Scholar
  17. 17.
    Cowan, N., Weingarten, J., Koditschek, D.: Visual servoing via navigation functions. IEEE Trans. Robot. Autom. 18(4), 521–533 (2002)CrossRefGoogle Scholar
  18. 18.
    Deguchi, K.: Optimal motion control for image-based visual servoing by decoupling translation and rotation. In: Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., pp. 705–711 (1998)Google Scholar
  19. 19.
    Deng, L., Janabi-Sharifi, F., Wilson, W.: Hybrid motion control and planning strategies for visual servoing. IEEE Trans. Ind. Electron. 52(4), 1024–1040 (2005)CrossRefGoogle Scholar
  20. 20.
    Espiau, B.: Effect of camera calibration errors on visual servoing in robotics. In: Proc. 3rd Int. Symp. Exp. Robot., pp. 182–192 (1994)Google Scholar
  21. 21.
    Espiau, B., Chaumette, F., Rives, P.: A new approach to visual servoing in robotics. IEEE Trans. Robot. Autom. 8(3), 313–326 (1992)CrossRefGoogle Scholar
  22. 22.
    Espiau, B., Chaumette, F., Rives, P.: A new approach to visual servoing in robotics. IEEE Trans. Robot. Autom. 8(3), 313–326 (1992)CrossRefGoogle Scholar
  23. 23.
    Faugeras, O.: Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, Cambridge (1993)Google Scholar
  24. 24.
    Gans, N., Hutchinson, S.: Stable visual servoing through hybrid switched-system control. IEEE Trans. Robot. 23(3), 530–540 (2007)CrossRefGoogle Scholar
  25. 25.
    Gans, N., Hutchinson, S., Corke, P.: Performance tests for visual servo control systems, with application to partitioned approaches to visual servo control. Int. J. Robot. Res. 22(10-11), 955–981 (2003)CrossRefGoogle Scholar
  26. 26.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003)Google Scholar
  27. 27.
    Hashimoto, K., Noritsugu, T.: Potential problems and switching control for visual servoing. In: Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., pp. 423–428 (2000)Google Scholar
  28. 28.
    Hayet, J., Esteves, C., Murrieta-Cid, R.: A motion planner for maintaining landmark visibility with a differential drive robot. In: To be published in Algorithmic Foundations of Robotics VIII (2009)Google Scholar
  29. 29.
    Hosoda, K., Sakamoto, K., Asada, M.: Trajectory generation for obstacle avoidance of uncalibrated stereo visual servoing without 3d reconstruction. In: Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., pp. 29–34 (1995)Google Scholar
  30. 30.
    Huang, Y., Gupta, K.: RRT-SLAM for motion planning with motion and map uncertainty for robot exploration. In: Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., pp. 1077–1082 (2008)Google Scholar
  31. 31.
    Hutchinson, S., Hager, G., Corke, P.: A tutorial on visual servo control. IEEE Trans. Robot. Autom. 12(5), 651–670 (1996)CrossRefGoogle Scholar
  32. 32.
    Kazemi, M., Gupta, K., Mehrandezh, M.: Global path planning for robust visual servoing in complex environments. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 326–332 (2009)Google Scholar
  33. 33.
    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Kirkpatrick, S., Gelatt Jr., C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Kuffner, J., LaValle, S.: RRT-connect: an efficient approach to single-query path planning. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 995–1001 (2000)Google Scholar
  36. 36.
    Kyrki, V., Kragic, D., Christensen, H.: New shortest-path approaches to visual servoing. In: Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., pp. 349–354 (2004)Google Scholar
  37. 37.
    Kyrki, V., Kragic, D., Christensen, H.: Measurement errors in visual servoing. Robot. Auton. Syst. 54(10), 815–827 (2006)CrossRefGoogle Scholar
  38. 38.
    Lang, O., Graser, A.: Visual control of 6 DOF robots with constant object size in the image by means of zoom camera. In: Proc. Conf. IEEE Ind. Electron. Society, pp. 1342–1347 (1999)Google Scholar
  39. 39.
    Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Norwell (1991)Google Scholar
  40. 40.
    LaValle, S.: Planning Algorithms. Cambridge University Press, Cambridge (2006)zbMATHCrossRefGoogle Scholar
  41. 41.
    LaValle, S., Gonzalez-Banos, H., Becker, C., Latombe, J.C.: Motion strategies for maintaining visibility of a moving target. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 731–736 (1997)Google Scholar
  42. 42.
    Lopez-Nicolas, G., Bhattacharya, S., Guerrero, J., Sagues, C., Hutchinson, S.: Switched homography-based visual control of differential drive vehicles with field-of-view constraints. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 4238–4244 (2007)Google Scholar
  43. 43.
    Lozano-Perez, T., Mason, M., Taylor, R.: Automatic synthesis of fine-motion strategies for robots. Int. J. Robot. Res. 3(1), 3–24 (1984)CrossRefGoogle Scholar
  44. 44.
    Mahony, R., Hamel, T., Chaumette, F.: A decoupled image space approach to visual servo control of a robotic manipulator. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 3781–3786 (2002)Google Scholar
  45. 45.
    Malis, E.: Visual servoing invariant to changes in camera-intrinsic parameters. IEEE Trans. Robot. Autom. 20(1), 72–81 (2004)CrossRefGoogle Scholar
  46. 46.
    Malis, E., Chaumette, F.: 2 1/2 D visual servoing with respect to unknown objects through a new estimation scheme of camera displacement. Int. J. Comput. Vis. 37(1), 79–97 (2000)zbMATHCrossRefGoogle Scholar
  47. 47.
    Malis, E., Chaumette, F., Boudet, S.: 2-1/2-D Visual servoing. IEEE Trans. Robot. Autom. 15(2), 238–250 (1999)CrossRefGoogle Scholar
  48. 48.
    Melchior, N., Simmons, R.: Particle RRT for path planning with unceratinty. Proc. IEEE Int. Conf. Robot. Autom., 1617–1624 (2007)Google Scholar
  49. 49.
    Mezouar, Y., Chaumette, F.: Path planning for robust image-based control. IEEE Trans. Robot. Autom. 18(4), 534–549 (2002)CrossRefGoogle Scholar
  50. 50.
    Mezouar, Y., Chaumette, F.: Optimal camera trajectory with image-based control. Int. J. Robot. Res. 22(10-11), 781–803 (2003)CrossRefGoogle Scholar
  51. 51.
    Michel, P., Scheurer, C., Kuffner, J., Vahrenkamp, N., Dillmann, R.: Planning for robust execution of humanoid motions using future perceptive capability. In: Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., pp. 3223–3228 (2007)Google Scholar
  52. 52.
    Morel, G., Liebezeit, T., Szewczyk, J., Boudet, S., Pot, J.: Explicit incorporation of 2D constraints in vision based control of robot manipulators. In: Proc. 6th Int. Symp. Exp. Robot., pp. 99–108 (2000)Google Scholar
  53. 53.
    Morel, G., Zanne, P., Plestan, F.: Robust visual servoing: bounding the task function tracking errors. IEEE Trans. Control Syst. Technol. 13(6), 998–1009 (2005)CrossRefGoogle Scholar
  54. 54.
    Park, J., Chung, M.: Path planning with uncalibrated stereo rig for image-based visual servoing under large pose discrepancy. IEEE Trans. Robot. Autom. 19(2), 250–258 (2003)CrossRefGoogle Scholar
  55. 55.
    Pepy, R., Lambert, A.: Safe path planning in an uncertain-configuration space using RRT. In: Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., pp. 5376–5381 (2006)Google Scholar
  56. 56.
    Salaris, P., Belo, F., Fontanelli, D., Greco, L., Bicchi, A.: Optimal paths in a constrained image plane for purely image-based parking. In: Proc. IEEE/RSJ Int. Conf. on Intell. Robot. Syst., pp. 1673–1680 (2008)Google Scholar
  57. 57.
    Sauvee, M., Poignet, P., Dombre, E., Courtial, E.: Image based visual servoing through nonlinear model predictive control. In: Proc. IEEE Conf. Decis. Control, pp. 1776–1781 (2006)Google Scholar
  58. 58.
    Schramm, F., Morel, G.: Ensuring visibility in calibration-free path planning for image-based visual servoing. IEEE Trans. Robot. 22(4), 848–854 (2006)CrossRefGoogle Scholar
  59. 59.
    Sharma, R., Hutchinson, S.: Motion perceptibility and its application to active vision-based servo control. IEEE Trans. Robot. Autom. 13(4), 607–617 (1997)CrossRefGoogle Scholar
  60. 60.
    Sharma, R., Sutanto, H.: A framework for robot motion planning with sensor constraints. IEEE Trans. Robot. Autom. 13(1), 61–73 (1997)CrossRefGoogle Scholar
  61. 61.
    Tarabanis, K., Tsai, R., Kaul, A.: Computing occlusion-free viewpoints. IEEE Trans. Pattern Anal. Mach. Intell. 18(3), 279–292 (1996)CrossRefGoogle Scholar
  62. 62.
    Yao, Z., Gupta, K.: Path planning with general end-effector constarints. Robot. Auton. Syst. 55(4), 316–327 (2007)CrossRefGoogle Scholar
  63. 63.
    Zhang, H., Ostrowski, J.: Visual motion planning for mobile robots. IEEE Trans. Robot. Autom. 18(2), 199–208 (2002)CrossRefGoogle Scholar

Copyright information

© Springer London 2010

Authors and Affiliations

  • Moslem Kazemi
    • 1
  • Kamal Gupta
    • 1
  • Mehran Mehrandezh
    • 2
  1. 1.School of Engineering ScienceSimon Fraser UniversityBurnabyCanada
  2. 2.Faculty of Engineering and Applied ScienceUniversity of ReginaRegina

Personalised recommendations