Advertisement

Catadioptric Stereo with Planar Mirrors: Multiple-view Geometry and Camera Localization

  • Gian Luca Mariottini
  • Stefano Scheggi
  • Fabio Morbidi
  • Domenico Prattichizzo
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 401)

Abstract

Planar catadioptric stereo (PCS) vision sensors consist of a pinhole camera and two or more planar mirrors. PCS systems have recently received an increasing attention in computer vision and have a promising applicability in robotics, since the use of mirrors allows to obtain a stereo view without the need of exact multi-camera synchronization and stereo calibration. The chapter presents a rigorous analytical treatment of the imaging geometry of PCS sensors and introduce new multiple-view properties that are instrumental in addressing the camera localization problem. Original results on mirror calibration are also provided. Extensive simulation and real-data experiments conducted with an eye-in-hand robot illustrate the theory and show the effectiveness of the proposed designs.

Keywords

Fundamental Matrix Planar Mirror Perspective Projection Pinhole Camera Virtual View 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armangué, X., Salvi, J.: Overall View Regarding Fundamental Matrix Estimation. Image Vision Comput. 21(2), 205–220 (2003)CrossRefGoogle Scholar
  2. 2.
    Bouguet, J.: Camera Calibration Toolbox for Matlab (2007), http://www.vision.caltech.edu/bouguetj
  3. 3.
    Boult, T., Nayar, S.: A Handy Stereo Camera. University of Columbia and Colorado (2000), http://vast.uccs.edu/~tboult/VSAM.html/#stereo
  4. 4.
    Geyer, C., Daniilidis, K.: Catadioptric Camera Calibration. In: Proc. 7th IEEE Int. Conf. Comp. Vis., vol. 1, pp. 398–404 (1999)Google Scholar
  5. 5.
    Gluckman, J., Nayar, S.: Planar Catadioptric Stereo: Geometry and Calibration. In: Proc. IEEE Conf. Comp. Vis. and Pattern Rec., vol. 1, pp. 22–28 (1999)Google Scholar
  6. 6.
    Gluckman, J., Nayar, S.: Catadioptric Stereo using Planar Mirrors. Int. J. Comput. Vision 44(1), 65–79 (2001)zbMATHCrossRefGoogle Scholar
  7. 7.
    Gluckman, J., Nayar, S.: Rectified Catadioptric Stereo Sensors. IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 224–236 (2002)CrossRefGoogle Scholar
  8. 8.
    Goshtasby, A., Gruver, W.: Design of a Single-Lens Stereo Camera System. Pattern Recogn. 26(6), 923–937 (1993)CrossRefGoogle Scholar
  9. 9.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  10. 10.
    Hong, W., Yang, A.Y., Huang, K., Ma, Y.: On Symmetry and Multiple-View Geometry: Structure, Pose, and Calibration from a Single Image. Int. J. Comput. Vision 60(3), 241–265 (2004)CrossRefGoogle Scholar
  11. 11.
    Konrad, J.: View Reconstruction for 3-D Video Entertainment: Issues, Algorithms and Applications. In: Proc. IEEE Int. Conf. Image Proc. and Appl., vol. 1, pp. 8–12 (1999)Google Scholar
  12. 12.
    Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vision 20(2), 91–110 (2004)CrossRefGoogle Scholar
  13. 13.
    Ma, Y., Soatto, S., Kosecká, J., Sastry, S.: An Invitation to 3-D Vision: From Images to Geometric Models. Interdisciplinary Applied Mathematics. Springer, Heidelberg (2003)Google Scholar
  14. 14.
    Mariottini, G., Prattichizzo, D.: EGT for Multiple View Geometry and Visual Servoing: Robotics Vision with Pinhole and Panoramic Cameras. IEEE Robot. Autom. Mag. 12(4), 26–39 (2005)CrossRefGoogle Scholar
  15. 15.
    Mariottini, G., Prattichizzo, D.: Image-based Visual Servoing with Central Catadioptric Camera. Int. J. Robot. Res. 27(1), 41–57 (2008)CrossRefGoogle Scholar
  16. 16.
    Mariottini, G., Scheggi, S., Morbidi, F., Prattichizzo, D.: Planar Catadioptric Stereo: Single and Multi-View Geometry for Calibration and Localization. In: Proc. IEEE Int. Conf. Robot. Automat, pp. 1510–1515 (2009)Google Scholar
  17. 17.
    Mitsumoto, H., Tamura, S., Okazaki, K., Kajimi, N., Fukui, Y.: 3-D Reconstruction using Mirror Images based on a Plane Symmetry Recovering Method. IEEE Trans. Pattern Anal. Mach. Intell. 14(9), 941–946 (1992)CrossRefGoogle Scholar
  18. 18.
    Nayar, S.: Catadioptric Omnidirectional Camera. In: Proc. IEEE Conf. Comp. Vis. and Pattern Rec., pp. 482–488 (1997)Google Scholar
  19. 19.
    Nene, S., Nayar, S.: Stereo with Mirrors. In: Proc. 6th IEEE Int. Conf. Comp. Vis., pp. 1087–1094 (1998)Google Scholar
  20. 20.
    Pachidis, T., Lygouras, J.: A Pseudo Stereo Vision System as a Sensor for Real-Time Path Control of a Robot. In: Proc. 19th IEEE Conf. Instr. and Measurem. Tech., vol. 2, pp. 1589–1594 (2002)Google Scholar
  21. 21.
    Svoboda, T., Pajdla, T.: Epipolar Geometry for Central Catadioptric Cameras. Int. J. Comput. Vision 49(1), 23–37 (2002)zbMATHCrossRefGoogle Scholar
  22. 22.
    Wu, H.H.: Rectification of Stereoscopic Video for Planar Catadioptric Stereo Systems. IEEE Trans. Circ. Syst. Video Tech. 17(6), 686–698 (2007)CrossRefGoogle Scholar

Copyright information

© Springer London 2010

Authors and Affiliations

  • Gian Luca Mariottini
    • 1
  • Stefano Scheggi
    • 2
  • Fabio Morbidi
    • 2
  • Domenico Prattichizzo
    • 2
  1. 1.Department of Computer Science and EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Information EngineeringUniversity of SienaSienaItaly

Personalised recommendations