Advertisement

Mining of Semantic Image Content Using Collective Web Intelligence

  • C. H. C. LeungEmail author
  • J. Liu
  • A. Milani
  • W. S. Chan
Part of the Advanced Information and Knowledge Processing book series (AI&KP)

Abstract

Human users spend a vast amount of time in interacting with image contents on the Web. Their interaction entails the exercise of considerable perceptive intelligence, visual judgment and mental evaluation. For high-level semantic image features and concepts, such processes of intelligent judgment cannot be mechanized or carried out automatically by machines. In this chapter, an indexing method is described whereby the aggregate intelligence of different Web users is continuously transferred to the Web. Such intelligence is codified, reinforced, distilled and shared among users so as to enable the systematic mining and discovery of semantic image contents. This method allows the collaborative creation of image indexes, which is able to instill and propagate deep knowledge and collective wisdom into the Web concerning the advanced semantic characteristics of Web images. This method is robust and adaptive, and is able to respond dynamically to changing usage patterns caused by community trends and social networking.

References

  1. 1.
    Azzam, I., Leung, C.H.C., Horwood, J.: Implicit concept-based image indexing and retrieval. In: Proc. of the IEEE Int’l Conf. on Multi-media Modeling, Brisbane, Australia, pp. 354–359 (2004) Google Scholar
  2. 2.
    Bertini, M., Bimbo, A.D., Torniai, C., Grana, C., Vezzani, R., Cucchiara, R.: Sports video annotation using enhanced HSV histograms in multimedia ontologies. In: Proc. of the 14th Int’l Conf. of Image Analysis and Processing—Workshops, pp. 160–170 (2007) Google Scholar
  3. 3.
    Chakrabarti, S., Joshi, M.M., Punera, K., Pennock, D.M.: The structure of broad topics on the web. In: Proc. of the 11th Int’l World Wide Web Conf., Honolulu, Hawaii, USA, pp. 251–262 (2002) Google Scholar
  4. 4.
    Diligenti, M., Gori, M., Maggini, M.: Web page scoring systems for horizontal and vertical search. In: Proc. of the 11th Int’l World Wide Web Conf., Honolulu, Hawaii, USA, pp. 508–516 (2002) Google Scholar
  5. 5.
    Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. In: Proc. of the 10th Int’l World Wide Web Conf., Hong Kong, pp. 613–622 (2001) Google Scholar
  6. 6.
    Fan, J., Gao, Y., Luo, H.: Hierarchical classification for automatic image annotation. In: Proc. of the 30th Annual Int’l ACM SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, The Netherlands, pp. 111–118 (2007) Google Scholar
  7. 7.
    Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., Ruppin, E.: Placing search in context: The concept revisited. In: Proc. of the 10th Int’l World Wide Web Conf., Hong Kong, pp. 406–414 (2001) Google Scholar
  8. 8.
    Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D.: A search engine for 3D model. ACM Transactions on Graphics 22(1), 83–105 (2003) CrossRefGoogle Scholar
  9. 9.
    Ganguly, P., Rabhi, F.A., Ray, P.K.: Bridging semantic gap. In: Proc. of the 2002 Conference on Pattern Languages of Programs, Melbourne, Australia, vol. 13, pp. 59–61 (2003) Google Scholar
  10. 10.
    Gantz, J.F., et al.: The diverse and exploding digital universe: An updated forecast of worldwide information growth through 2011. IDC White Paper (March 2008) Google Scholar
  11. 11.
    Gevers, T., Smeulders, A.W.M.: Image search engines: An overview. In: Emerging Topics in Computer Vision, pp. 1–54. Prentice-Hall, Englewood Cliffs (2004) Google Scholar
  12. 12.
    Ghahramani, S.: Fundamentals of Probability with Stochastic Processes, 3rd edn. Prentice-Hall, Englewood Cliffs (2005) Google Scholar
  13. 13.
    Haveliwala, T.H.: Topic-sensitive PageRank. In: Proc. of the 11th Int’l World Wide Web Conf., Honolulu, Hawaii, USA, pp. 517–526 (2002) Google Scholar
  14. 14.
    Haveliwala, T.H.: Topic-sensitive PageRank: A context-sensitive ranking algorithm for web search. IEEE Transactions on Knowledge and Data Engineering 15(4), 784–796 (2003) CrossRefGoogle Scholar
  15. 15.
    Hawarth, R.J., Buxton, H.: Conceptual-description from monitoring and watching image sequences. Image and Vision Computing 18, 105–135 (2000) CrossRefGoogle Scholar
  16. 16.
    Jeh, G., Widom, J.: Scaling personalized web search. In: Proc. of the 12th Int’l World Wide Web Conf., Budapest, Hungary, pp. 271–279 (2003) Google Scholar
  17. 17.
    Kamvar, S.D., Haveliwala, T.H., Manning, C.D., Golub, G.H.: Extrapolation methods for accelerating PageRank computations. In: Proc. of the 12th Int’l World Wide Web Conf., Budapest, Hungary, pp. 261–270 (2003) Google Scholar
  18. 18.
    Leung, C.H.C., Liu, J.: Multimedia data mining and searching through dynamic index evolution. In: Proc. of the 9th Int’l Conf. on Visual Information Systems, Shanghai, China, pp. 298–309 (2007) Google Scholar
  19. 19.
    Leung, C.H.C., Liu, J., Chan, W.S., Milani, A.: An architectural paradigm for collaborative semantic indexing of multimedia data objects. In: Proc. of the 10th Int’l Conf. on Visual Information Systems, Salerno, Italy, pp. 216–226 (2008) Google Scholar
  20. 20.
    Millard, D.E., Gibbins, N.M., Michaelides, D.T., Weal, M.J.: Mind the semantic gap. In: Proc. of the 16th ACM Conf. on Hypertext and Hypermedia, Salzburg, Austria, pp. 54–62 (2005) Google Scholar
  21. 21.
    Müller, H., Müller, W., Squire, D.M., Marchand-Maillet, S., Pun, T.: Performance evaluation in content-based image retrieval: Overview and proposals. Pattern Recognition Letters 22(5), 593–601 (2001) zbMATHCrossRefGoogle Scholar
  22. 22.
    Nie, L., Davison, B.D., Qi, X.: Topical link analysis for web search. In: Proc. of the 29th Annual Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval, Seattle, Washington, USA, pp. 91–98 (2006) Google Scholar
  23. 23.
    Over, P., Leung, C.H.C., Ip, H., Grubinger, M.: Multimedia retrieval benchmarks. IEEE Multimedia 11(2), 80–84 (2004) CrossRefGoogle Scholar
  24. 24.
    Shi, R., Lee, C., Chua, T.: Enhancing image annotation by integrating concept ontology and text-based bayesian learning model. In: Proc. of the 15th Int’l Conf. on Multimedia, Augsburg, Germany, pp. 341–344 (2007) Google Scholar
  25. 25.
    Smeulders, A.W., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000) CrossRefGoogle Scholar
  26. 26.
    Tam, A.M., Leung, C.H.C.: Structured natural-language descriptions for semantic content retrieval of visual materials. Journal of the American Society for Information Science and Technology 52(11), 930–937 (2001) CrossRefGoogle Scholar
  27. 27.
    Wang, C., Zhang, L., Zhang, H.: Learning to reduce the semantic gap in web image retrieval and annotation. In: Proc. of the 31st Annual Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval, Singapore, pp. 355–362 (2008) Google Scholar
  28. 28.
    Wang, J.Z., Geman, D., Luo, J., Gray, R.M.: Real-world image annotation and retrieval: An introduction to the special section. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(11), 1873–1876 (2008) CrossRefGoogle Scholar
  29. 29.
    Wang, M., Zhou, X., Chua, T.: Automatic image annotation via local multi-label classification. In: Proc. of the 2008 Int’l Conf. on Content-Based Image and Video Retrieval, Niagara Falls, Canada, pp. 17–26 (2008) Google Scholar
  30. 30.
    Wong, R.C.F., Leung, C.H.C.: Automatic semantic annotation of real world Web images. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(11), 1933–1944 (2008) CrossRefGoogle Scholar
  31. 31.
    Yang, C., Dong, M., Fotouhi, F.: Region based image annotation through multiple-instance learning. In: Proc. of the 13th Annual ACM Int’l Conf. on Multimedia, Hilton, Singapore, pp. 435–438 (2005) Google Scholar

Copyright information

© Springer-Verlag London 2010

Authors and Affiliations

  • C. H. C. Leung
    • 1
    Email author
  • J. Liu
    • 1
  • A. Milani
    • 2
  • W. S. Chan
    • 1
  1. 1.Department of Computer ScienceHong Kong Baptist UniversityKowloon TongHong Kong
  2. 2.Department of Mathematics & Computer ScienceUniversity of PerugiaPerugiaItaly

Personalised recommendations