Computing Similarity of Semantic Web Services in Semantic Nets with Multiple Concept Relations

  • Xia WangEmail author
  • Yi Zhao
  • Wolfgang A. Halang
Part of the Advanced Information and Knowledge Processing book series (AI&KP)


The similarity of semantic web services is measured by matching service descriptions, which mostly depends on the understanding of their ontological concepts. Computing concept similarity on the basis of heterogeneous ontologies is still a problem. The current efforts only consider single hierarchical concept relations, which fail to express rich and implied information on concepts. Similarity under multiple types of concept relations as required by many application scenarios still needs to be investigated.

To this end, first an original ontological concept similarity algorithm in a semantic net is proposed taking multiple concept relations into consideration, particularly fuzzy-weight relations between concepts. Then, this algorithm is employed to promote computing the similarity of semantic web services. An experimental prototype and detailed empirical discussions are presented, and the method is validated in the framework of web service selection.


Concept Relation Concept Similarity Service Selection Domain Ontology Service Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM, New York (1999) Google Scholar
  2. 2.
    Bernstein, A., Kaufmann, E., Buerki, C., Klein, M.: How similar is it? Towards personalized similarity measures in ontologies. In: Proc. Intl. Tagung Wirtschaftsinformatik (2005) Google Scholar
  3. 3.
    Bouquet, P., Serafini, L., Zanobini, S.: Semantic coordination: A new approach and an application. In: Proc. 2nd Intl. Semantic Web Conf (2003) Google Scholar
  4. 4.
    Budanitsky, A., Hirst, G.: Semantic distance in WordNet: An experimental, application-oriented evaluation of five measures. In: Proc. Workshop on WordNet and Other Lexical Resources (2001) Google Scholar
  5. 5.
    Choi, N., Song, I., Han, H.: A survey on ontology mapping. SIGMOD Record 35(3), 34–41 (2006) CrossRefGoogle Scholar
  6. 6.
    Cornelis, C., de Kesel, P., Kerre, E.E.: Information retrieval based on conceptual distance in IS-A hierarchies. International Journal of Intelligent Systems 19(11), 1051–1068 (2004) zbMATHCrossRefGoogle Scholar
  7. 7.
    Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., Halevy, A.: Learning to match ontologies on the semantic web. VLDB Journal 12(4), 303–319 (2003) CrossRefGoogle Scholar
  8. 8.
    Dong, X., Alon, Y., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for web services. In: Proc. VLDB (2004) Google Scholar
  9. 9.
    Ehrig, M., Haase, P., Hefke, M., Stojanovic, N.: Similarity for ontologies—a comprehensive framework. In: Proc. ECIS (2005) Google Scholar
  10. 10.
    Guarino, N.: Formal ontology and information systems. In: Guarino, N. (ed.) Formal Ontology in Information Systems. IOS Press, Amsterdam (1998) Google Scholar
  11. 11.
    Hau, J., Lee, W., Darlington, J.: A semantic similarity measure for semantic web services. In: Proc. WWW2005 (2005) Google Scholar
  12. 12.
    Jarmasz, M., Szpakowicz, S.: Roget’s thesaurus and semantic similarity. In: Proc. Conf. on Recent Advances in Natural Language Processing (2003) Google Scholar
  13. 13.
    Jong, K., Candan, K.: CP/CV: Concept similarity mining without frequency information from domain describing taxonomies. In: Proc. CIKM (2006) Google Scholar
  14. 14.
    Kokash, N.: A comparison of web service interface similarity measures. In: Proc. European Starting AI Researcher Symposium (2006) Google Scholar
  15. 15.
    Kuang, L., Deng, S.G., Li, Y., Shi, W., Wu, Z.H.: Exploring semantic technologies in service matchmaking. In: Proc. ECOWS (2005) Google Scholar
  16. 16.
    Lausen, H., de Bruijn, J., Polleres, A., Fensel, D.: WSML—a language framework for semantic web services. In: Proc. W3C Workshop on Rule Languages for Interoperability (2005) Google Scholar
  17. 17.
    Lee, J.H., Kim, H., Lee, Y.J.: Information retrieval based on conceptual distance in IS-A hierarchies. Journal of Documentation 49, 188–207 (1993) CrossRefGoogle Scholar
  18. 18.
    Li, Y.H., Bandar, Z., McLean, D.: An approach for measuring semantic similarity between words using multiple information sources. IEEE Transactions on Knowledge and Data Engineering 15(4), 871–882 (2003) CrossRefGoogle Scholar
  19. 19.
    Lin, D.: An information-theoretic definition of similarity. In: Proc. 15th Intl. Conf. on Machine Learning (1998) Google Scholar
  20. 20.
    Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Proc. European Conf. on Knowledge Acquisition and Management (2002) Google Scholar
  21. 21.
    Maedche, A., Motik, B., Stojanovic, L., Studer, R., Volz, R.: Ontologies for enterprise knowledge management. IEEE Intelligent Systems 18(2), 26–33 (2003) CrossRefGoogle Scholar
  22. 22.
    Mao, M.: Ontology mapping: An information retrieval and interactive activation network based approach. In: Proc. 6th Intl. Semantic Web Conf. Lecture Notes in Computer Science, vol. 4825. Springer, Berlin (2007) Google Scholar
  23. 23.
    Milo, T., Zohar, S.: Using schema matching to simplify heterogeneous data translation. In: Proc. Intl. Conf. on Very Large Databases (1998) Google Scholar
  24. 24.
    Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997) zbMATHGoogle Scholar
  25. 25.
    Mitra, P., Noy, N.F., Jaiswals, A.: OMEN: A probabilistic ontology mapping tool. In: Proc. Intl. Semantic Web Conf (2005) Google Scholar
  26. 26.
    OWL-S: Semantic markup for web services, W3C member submission (2004) Google Scholar
  27. 27.
    Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic matching of web services capabilities. In: Proc. Intl. Semantic Web Conf. Lecture Notes in Computer Science, vol. 2342. Springer, Berlin (2002) Google Scholar
  28. 28.
    Patel-Schneider, P.F., Hayes, P., Horrocks, I. (eds.): OWL web ontology language semantics and abstract syntax, W3C recommendation (2004) Google Scholar
  29. 29.
    Polleres, A., Lara, R. (eds.): A conceptual comparison between WSMO and OWL-S, WSMO Working Group working draft (2005) Google Scholar
  30. 30.
    Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Transactions on Systems, Man, and Cybernetics 19(1), 17–30 (1989) CrossRefGoogle Scholar
  31. 31.
    Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching. VLDB Journal 10(4) (2001) Google Scholar
  32. 32.
    Resnik, P.: Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language. Journal of Artificial Intelligence Research 11, 95–130 (1999) zbMATHGoogle Scholar
  33. 33.
    Roman, D., Keller, U., Lausen, H., et al.: Web service modeling ontology. Applied Ontology 1(1), 77–106 (2005) Google Scholar
  34. 34.
    Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983) zbMATHGoogle Scholar
  35. 35.
    Tous, R., Delgado, J.: A vector space model for semantic similarity calculation and OWL ontology alignment. In: Bressan, S., Kueng, J., Wagner, R. (eds.) Proc. DEXA. Lecture Notes in Computer Science, vol. 4080. Springer, Berlin (2006) Google Scholar
  36. 36.
    Wang, X., Ding, Y.H., Zhao, Y.: Similarity measurement about ontology-based semantic web services. In: Proc. Ws. on Semantics for Web Services (2006) Google Scholar
  37. 37.
    Wang, X., Vitvar, T., Hauswirth, M., Foxvog, D.: Building application ontologies from descriptions of semantic web services. In: Proc. IEEE/WIC/ACM Intl. Conf. on Web Intelligence (2007) Google Scholar
  38. 38.
    Wang, Y., Stroulia, E.: Semantic structure matching for assessing web service similarity. In: Service-Oriented Computing. Lecture Notes in Computer Science, vol. 2910. Springer, Berlin (2003) Google Scholar
  39. 39.
    Zhuang, Z., Mitra, P., Jaiswal, A.: Corpus-based web services matchmaking. In: Proc. AAAI (2005) Google Scholar

Copyright information

© Springer-Verlag London 2010

Authors and Affiliations

  1. 1.FernuniversitätHagenGermany

Personalised recommendations