Advertisement

Metamodel of Ontology Learning from Text

  • Marek Wisniewski
Part of the Advanced Information and Knowledge Processing book series (AI&KP)

Abstract

Ontologies play a pervasive role in many areas of IT. Over the last decade a substantial number of ontologies have been developed. However, while looking for a specific ontology it is difficult to find the right one because of the problems of the ontology unavailability or inadequacy. Although many ontology learning methods already exist, there are no comprehensive models of the whole process of the ontology learning from text. In this article, the metamodel of the ontology learning from text is presented. The approach is based on the survey of the existing methods, while evaluation is provided in the form of a reference implementation of the introduced metamodel.

References

  1. 1.
    Abramowicz, W., Vargas-Vera, M., Wisniewski, M.: Axiom-based feedback cycle for relation extraction in ontology learning from text. In: DEXA ’08: Proceedings of the 19th International Conference on Database and Expert Systems Applications. IEEE Comput. Soc., Los Alamitos (2008) Google Scholar
  2. 2.
    Abramowicz, W., Wisniewski, M.: Proximity window context method for term extraction in ontology learning from text. In: DEXA ’08: Proceedings of the 19th International Conference on Database and Expert Systems Applications. IEEE Comput. Soc., Los Alamitos (2008) Google Scholar
  3. 3.
    Adar, E.: Sarad: A simple and robust abbreviation dictionary. Bioinformatics 20(4), 527–533 (2004) CrossRefGoogle Scholar
  4. 4.
    Agirre, E., Ansa, O., Hovy, E., Martínez, D.: Enriching very large ontologies using the www. In: Proc. of the Ontology Learning Workshop, ECAI, Berlin, Germany (2000) Google Scholar
  5. 5.
    Alfonseca, E., Manandhar, S.: Extending a lexical ontology by a combination of distributional semantics signatures. In: Proceedings of the 13th International Conference on Knowledge Engineering and Knowledge Management (EKAW 2002) (2002) Google Scholar
  6. 6.
    Alfonseca, E., Manandhar, S.: Improving an ontology refinement method with hyponymy patterns. In: Language Resources and Evaluation (LREC-2002), Las Palmas, Spain (2002) Google Scholar
  7. 7.
    Aussenac-Gilles, N., Biébow, B., Szulman, S.: Revisiting ontology design: A methodology based on corpus analysis. In: Proceedings of the 12th European Workshop on Knowledge Acquisition, Modeling and Management. Springer, Berlin (2000) Google Scholar
  8. 8.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003) zbMATHGoogle Scholar
  9. 9.
    Basili, R., Pazienza, M.T., Velardi, P.: An empirical symbolic approach to natural language processing. Artificial Intelligence 85, 59–99 (1996) CrossRefGoogle Scholar
  10. 10.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284(5) (2001) Google Scholar
  11. 11.
    Brody, S., Navigli, R., Lapata, M.: Ensemble methods for unsupervised WSD. In: ACL ’06: Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the ACL, pp. 97–104, Association for Computational Linguistics, Morristown, NJ, USA (2006) Google Scholar
  12. 12.
    Budanitsky, A., Hirst, G.: Evaluating WordNet-based measures of lexical semantic relatedness. Computational Linguistics 32(1), 13–47 (2006) zbMATHCrossRefGoogle Scholar
  13. 13.
    Buitelaar, P., Cimiano, P.: Ontology learning from text: Tutorial. In: 11th Conference of the European Chapter of the Association for Computational Linguistics, Trento, Italy (2006) Google Scholar
  14. 14.
    Buitelaar, P., Cimiano, P., Magnini, B.: Ontology learning from text: An overview. In: Buitelaar, P., Cimiano, P., Magnini, B. (eds.) Ontology Learning from Text: Methods, Evaluation and Applications. Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam (2005) Google Scholar
  15. 15.
    Buitelaar, P., Olejnik, D., Sintek, M.: A protege plug-in for ontology extraction from text based on linguistic analysis. In: Proceedings of the 1st European Semantic Web Symposium (ESWS) (2004) Google Scholar
  16. 16.
    Buitelaar, P., Sintek, M.: Ontolt version 1.0: Middleware for ontology extraction from text. In: Proceedings of the Demo Session at the International Semantic Web Conference (ISWC) (2004) Google Scholar
  17. 17.
    Bunescu, R., Mooney, R.: Learning to extract relations from the web using minimal supervision. In: Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, Association for Computational Linguistics, Prague, Czech Republic (June 2007) Google Scholar
  18. 18.
    Caraballo, S.A.: Automatic construction of a hypernym-labeled noun hierarchy from text. In: Proceedings of the Conference of the Association for Computational Linguistics (1999) Google Scholar
  19. 19.
    Caraballo, S.A.: Automatic construction of a hypernym—labeled noun hierarchy from text. PhD thesis, Providence, RI, USA, 2001. Adviser—E. Charniak Google Scholar
  20. 20.
    Cederberg, S., Widdows, D.: Using LSA and noun coordination information to improve the precision and recall of automatic hyponymy extraction. In: Proceedings of the Conference on Natural Language Learning (CoNNL) (2003) Google Scholar
  21. 21.
    Chang, J., Schutze, H.: Abbreviations in biomedical text. In: Ananiadou, S., Mcnaught, J. (eds.) Text Mining for Biology and Biomedicine, pp. 99–119. Artech House, Norwood (2006) Google Scholar
  22. 22.
    Charniak, E., Berland, M.: Finding parts in very large corpora. In: Proceedings of the 37th Annual Meeting of the ACL (1999) Google Scholar
  23. 23.
    Cimiano, P.: Ontology learning from text. PhD thesis, University of Karlsruhe (2006) Google Scholar
  24. 24.
    Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora using formal concept analysis. Journal of Artificial Intelligence Research 24, 305–339 (2005) zbMATHGoogle Scholar
  25. 25.
    Cimiano, P., Schmidt-Thieme, L., Pivk, A., Staab, S.: Learning taxonomic relations from heterogeneous evidence. In: Ontology Learning from Text: Methods, Applications and Evaluation, pp. 59–73. IOS Press, Amsterdam (2005) Google Scholar
  26. 26.
    Cimiano, P., Staab, S.: Learning concept hierarchies from text with a guided agglomerative clustering algorithm. In: ICML 2005 Workshop on Learning and Extending Lexical Ontologies with Machine Learning Methods (2005) Google Scholar
  27. 27.
    Cimiano, P., Völker, J.: Text2onto—a framework for ontology learning and data-driven change discovery. In: 10th International Conference on Applications of Natural Language to Information Systems (NLDB’2005) (2005) Google Scholar
  28. 28.
    Cimiano, P., Wenderoth, J.: Automatically learning qualia structures from the web. In: Proceedings of the ACL Workshop on Deep Lexical Acquisition (2005) Google Scholar
  29. 29.
    Cristani, M., Cuel, R.: A survey on ontology creation methodologies. International Journal on Semantic Web and Information Systems 1(2), 49–69 (2005) CrossRefGoogle Scholar
  30. 30.
    Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: Gate: A framework and graphical development environment for robust NLP tools and applications. In: Proceedings of the 40th Annual Meeting of the ACL (2002) Google Scholar
  31. 31.
    Cunningham, H., Maynard, D., Tablan, V.: Jape: A java annotation patterns engine (2nd edn.). Technical report, Department of Computer Science, University of Sheffield (November 2000) Google Scholar
  32. 32.
    Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Ursu, C., Dimitrov, M., Dowman, M., Aswani, N., Roberts, I., Li, Y., Shafirin, A.: Developing Language Processing Components with GATE Version 4. Department of Computer Science, University of Sheffield, 4.0-beta1 edition, April 2007 Google Scholar
  33. 33.
    Daille, B.: Study and implementation of combined techniques for automatic extraction of terminology. In: Klavans, J., Resnik, P. (eds.) The Balancing Act: Combining Symbolic and Statistical Approaches to Language, pp. 49–66. MIT Press, Cambridge (1996) Google Scholar
  34. 34.
    Dunning, T.: Accurate methods for the statistics of surprise and coincidence. Computational Linguistics 19(1), 61–74 (1993) Google Scholar
  35. 35.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998) zbMATHGoogle Scholar
  36. 36.
    Fensel, D.: Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce. Springer, New York (2003) Google Scholar
  37. 37.
    Fensel, D., van Harmelen, F., Klein, M., Akkermans, H., Broekstra, J., Fluit, C., van der Meer, J., Schnurr, H.-P., Studer, R., Hughes, J., Krohn, U., Davies, J., Engels, R., Bremdal, B., Ygge, F., Lau, T., Novotny, B., Reimer, U., Horrocks, I.: Onto-knowledge: Ontology-based tools for knowledge management. In: Proceedings of the eBusiness and eWork 2000 (eBeW’00) Conference, Madrid, Spain (2000) Google Scholar
  38. 38.
    Fotzo, H.N., Gallinari, P.: Learning generalization/specialization relations between concepts—application for automatically building thematic document hierarchies. In: RIAO (2004) Google Scholar
  39. 39.
    Frantzi, K., Ananiadou, S., Mima, H.: Automatic recognition of multi-word terms: The C-value/NC-value method. International Journal on Digital Libraries 3(2), 115–130 (2000) CrossRefGoogle Scholar
  40. 40.
    Girju, R., Moldovan, D.: Text mining for causal relations. In: Proceedings of the FLAIRS Conference (2002) Google Scholar
  41. 41.
    Grefenstette, G.: Cross-Language Information Retrieval. Kluwer International Series on Information Retrieval. Kluwer Academic, Boston (1998) CrossRefGoogle Scholar
  42. 42.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Acquisition 5(2), 199–220 (1993) CrossRefGoogle Scholar
  43. 43.
    Gruber, T.: Ontology. In: Liu, L., Tamer Ozsu, M. (eds.) Encyclopedia of Database Systems. Springer, Berlin (2008) Google Scholar
  44. 44.
    Haase, P., Völker, J.: Ontology learning and reasoning—dealing with uncertainty and inconsistency. In: Proceedings of the Workshop on Uncertainty Reasoning for the Semantic Web (URSW) (2005) Google Scholar
  45. 45.
    Hammerton, J., Osborne, M., Armstrong, S., Daelemans, W.: Introduction to special issue on machine learning approaches to shallow parsing. Journal of Machine Learning Research 2002(2), 8 (2002) Google Scholar
  46. 46.
    Hamp, B., Feldweg, H.: Germanet—a lexical-semantic net for German. In: Proceedings of ACL Workshop Automatic Information Extraction and Building of Lexical Semantic Resources for NLP Applications, Madrid, Spain (1997) Google Scholar
  47. 47.
    Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: 14th International Conference on Computational Linguistics (1992) Google Scholar
  48. 48.
    Hearst, M.A.: Automated discovery of WordNet relations. In: Fellbaum, C. (ed.) WordNet: An Electronic Lexical Database and Some of its Applications, pp. 132–152. MIT Press, Cambridge (1998) Google Scholar
  49. 49.
    Hepp, M.: Products and services ontologies: A methodology for deriving owl ontologies from industrial categorization standards. International Journal on Semantic Web and Information Systems 2(1), 72–99 (2006) CrossRefGoogle Scholar
  50. 50.
    Hepp, M.: Ontologies: State of the art, business potential, and grand challenges. In: Ontology Management, pp. 3–22. Springer, Berlin (2008) CrossRefGoogle Scholar
  51. 51.
    Hepp, M., De Leenheer, P., de Moor, A., Sure, Y.: Ontology Management, Semantic Web, Semantic Web Services, and Business Applications. Semantic Web and Beyond Computing for Human Experience, vol. 7. Springer, Berlin (2008) Google Scholar
  52. 52.
    Hepple, M.: Independence and commitment: Assumptions for rapid training and execution of rule-based POS taggers. In: Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics (ACL-2000), Hong Kong (2000) Google Scholar
  53. 53.
    Huang, J.-X., Shin, J.-A., Choi, K.-S.: Integrating relations for a domain ontology. In: Proceedings of the 6th International Semantic Web Conference, Busan, Korea (November 2007) Google Scholar
  54. 54.
    International Organization for Standardization. ISO 1087-1:2000 Terminology Work—Vocabulary—Part 1: Theory and Application (2000) Google Scholar
  55. 55.
    International Organization for Standardization. ISO 704:2000 Terminology Work—Principles and Methods (2000) Google Scholar
  56. 56.
    International Organization for Standardization. ISO 860:2007 Terminology Work—Harmonization of Concepts and Terms (2007) Google Scholar
  57. 57.
    Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Prentice-Hall, Upper Saddle River (2000) Google Scholar
  58. 58.
    Kauffman, R.J., Walden, E.A.: Economics and electronic commerce: Survey and directions for research. International Journal of Electronic Commerce 5(4), 5–116 (2001) Google Scholar
  59. 59.
    Kenter, T., Maynard., D.: Using GATE as an annotation tool. Department of Computer Science, University of Sheffield (January 2005) Google Scholar
  60. 60.
    Kietz, J., Maedche, A., Volz, R.: A method for semi-automatic ontology acquisition from a corporate intranet. In: Workshop “Ontologies and Text”, co-located with EKAW’2000 (2000) Google Scholar
  61. 61.
    Kipfer, B.A.: Roget new millennium thesaurus, 1st edn. (v 1.1.1), 2006-04-03 (2006) Google Scholar
  62. 62.
    Lin, D., Pantel, P.: Dirt—discovery of inference rules from text. In: Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining (2001) Google Scholar
  63. 63.
    Maedche, A.: Ontology Learning for the Semantic Web. Kluwer Academic, Boston (2002) zbMATHCrossRefGoogle Scholar
  64. 64.
    Maedche, A., Staab, S.: Discovering conceptual relations from text. In: ECAI 2000. Proceedings of the 14th European Conference on Artificial Intelligence, Berlin, Germany. IOS Press, Amsterdam (2000) Google Scholar
  65. 65.
    Maedche, A., Staab, S.: Semi-automatic engineering of ontologies from text. In: Proceedings of the 12th International Conference on Software Engineering and Knowledge Engineering (2000) Google Scholar
  66. 66.
    Maedche, A., Staab, S.: The text-to-onto ontology learning environment. In: Proceedings of the 12th Internal Conference on Software and Knowledge Engineering, Chicago, USA (2000) Google Scholar
  67. 67.
    Manning, C.D., Schutze, H.: Foundations of Statistical Natural Language Processing. MIT Press, Cambridge (1999) zbMATHGoogle Scholar
  68. 68.
    Medjahed, B., Benatallah, B., Bouguettaya, A., Ngu, A.H.H., Elmagarmid, A.K.: Business-to-business interactions: Issues and enabling technologies. The VLDB Journal 12(1), 59–85 (2003) CrossRefGoogle Scholar
  69. 69.
    Missikoff, M., Navigli, R., Velardi, P.: Integrated approach to web ontology learning and engineering. IEEE Computer 35(11), 60–63 (2002) CrossRefGoogle Scholar
  70. 70.
    Nadeau, D.: Balie—baseline information extraction. Multilingual information extraction from text with machine learning and natural language techniques. Technical report, School of Information Technology and Engineering, University of Ottawa, Canada (2005) Google Scholar
  71. 71.
    Narayanan, S., Petruck, M.R.L., Baker, C.F., Fillmore, C.J.: Putting FrameNet data into the ISO linguistic annotation framework. In: Proceedings of the ACL 2003 Workshop on Linguistic Annotation, pp. 22–29, Association for Computational Linguistics, Morristown, NJ, USA (2003) Google Scholar
  72. 72.
    Navigli, R.: Meaningful clustering of senses helps boost word sense disambiguation performance. In: ACL ’06: Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the ACL, pp. 105–112, Association for Computational Linguistics, Morristown, NJ, USA (2006) Google Scholar
  73. 73.
    Navigli, R., Velardi, P.: Learning domain ontologies from document warehouses and dedicated web sites. Computational Linguistics 30(2), 151–179 (2004) zbMATHCrossRefGoogle Scholar
  74. 74.
    Navigli, R., Velardi, P.: Structural semantic interconnections: A knowledge-based approach to word sense disambiguation. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(7), 1075–1086 (2005) CrossRefGoogle Scholar
  75. 75.
    Navigli, R., Velardi, P., Cucchiarelli, A., Neri, F.: Quantitative and qualitative evaluation of the OntoLearn ontology learning system. In: COLING ’04: Proceedings of the 20th International Conference on Computational Linguistics, p. 1043, Association for Computational Linguistics, Morristown, NJ, USA (2004) Google Scholar
  76. 76.
    Nenadic, G., Ananiadou, S., McNaught, J.: Enhancing automatic term recognition through recognition of variation. In: COLING ’04: Proceedings of the 20th International Conference on Computational Linguistics, p. 604, Association for Computational Linguistics, Morristown, NJ, USA (2004) Google Scholar
  77. 77.
    Niles, I., Pease, A.: Towards a standard upper ontology. In: FOIS ’01: Proceedings of the International Conference on Formal Ontology in Information Systems. ACM, New York (2001) Google Scholar
  78. 78.
    Ogden, C.K., Richards, I.A.: The Meaning of Meaning: A Study of the Influence of Language upon Thought and of the Science of Symbolism. International Library of Psychology, Philosophy, and Scientific Method. Harcourt Brace, New York (1923) Google Scholar
  79. 79.
    Okazaki, N., Ananiadou, S.: A term recognition approach to acronym recognition. In: Proceedings of the COLING/ACL on Main Conference Poster Sessions, Association for Computational Linguistics, Morristown, NJ, USA (2006) Google Scholar
  80. 80.
    Piasecki, M., Broda, B.: Semantic similarity measure of Polish nouns based on linguistic features. In: Proceedings of 10th International Conference on Business Information Systems, Poznan, Poland. Lecture Notes in Computer Science. Springer, Berlin (2007) Google Scholar
  81. 81.
    Pinto, H.S., Martins, J.P.: Ontologies: How can they be built? Knowledge and Information Systems 6(4), 441–464 (2004) CrossRefGoogle Scholar
  82. 82.
    Piskorski, J., Drozdzynski, W., Krieger, H.-U., Schafer, U.: Sprout—a general-purpose NLP framework integrating finite-state and unification-based grammar formalisms. In: Proceedings of the 5th International Workshop on Finite-State Methods and Natural Language Processing, Helsinki, Finland. Lecture Notes in Artificial Intelligence. Springer, Berlin (2005) Google Scholar
  83. 83.
    Poesio, M., Almuhareb, A.: Identifying concept attributes using a classifier. In: Proceedings of the ACL Workshop on Deep Lexical Acquisition (2005) Google Scholar
  84. 84.
    Poesio, M., Ishikawa, T., Schulte im Walde, S., Vieira, R.: Acquiring lexical knowledge for anaphora resolution. In: Proceedings of the 3rd Conference on Language Resources and Evaluation (2002) Google Scholar
  85. 85.
    Rinaldi, F., Yuste, E.: Exploiting technical terminology for knowledge management. In: Buitelaar, P., Cimiano, P., Magnini, B. (eds.) Ontology Learning from Text: Methods, Evaluation and Applications. Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam (2005) Google Scholar
  86. 86.
    Roux, C., Proux, D., Rechenmann, F., Julliard, L.: An ontology enrichment method for a pragmatic information extraction system gathering data on genetic interactions. In: Proceedings of the ECAI2000 Workshop on Ontology Learning (OL2000), Berlin, Germany (2000) Google Scholar
  87. 87.
    Sanderson, M., Croft, B.: Deriving concept hierarchies from text. In: SIGIR ’99. ACM, New York (1999) Google Scholar
  88. 88.
    Schwartz, A., Hearst, M.: A simple algorithm for identifying abbreviation definitions in biomedical texts. In: Proceedings of the Pacific Symposium on Biocomputing PSB 2003 (2003) Google Scholar
  89. 89.
    Simperl, E.P.B., Sure, Y., Tempich, C.: Ontocom: A cost estimation model for ontology engineering. In: Proceedings of the 5th International Semantic Web Conference, Athens, Georgia (November 2006) Google Scholar
  90. 90.
    Singh, R., Iyer, L.S., Salam, A.F.: Semantic ebusiness. International Journal on Semantic Web and Information Systems 1(1), 19–35 (2005) CrossRefGoogle Scholar
  91. 91.
    Sintek, M., Buitelaar, P., Olejnik, D.: A formalization of ontology learning from text. In: International Semantic Web Conference. Hiroshima, Japan (2004) Google Scholar
  92. 92.
    Smadja, F.: Retrieving collocations from text: Xtract. Computational Linguistics 19(1), 143–177 (1993) Google Scholar
  93. 93.
    Snow, R., Jurafsky, D., Ng, A.Y.: Semantic taxonomy induction from heterogeneous evidence. In: ACL ’06: Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the ACL, pp. 801–808, Association for Computational Linguistics, Morristown, NJ, USA (2006) Google Scholar
  94. 94.
    Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading (1984) zbMATHGoogle Scholar
  95. 95.
    Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks/Cole, Pacific Grove (2000) Google Scholar
  96. 96.
    Sowa, J.F.: Ontology, metadata, and semiotics. In: Proceedings of the Linguistic on Conceptual Structures: Logical Linguistic, and Computational Issues. Springer, Berlin (2000) Google Scholar
  97. 97.
    Sundblad, H.: Automatic acquisition of hyponyms and meronyms from question corpora. In: Proceedings of the Workshop on Natural Language Processing and Machine Learning for Ontology Engineering at ECAI’2002. Lyon, France (2003) Google Scholar
  98. 98.
    Torii, M., Liu, H., Hu, Z., Wu, C.: A comparison study of biomedical short form definition detection algorithms. In: TMBIO ’06: Proceedings of the 1st International Workshop on Text Mining in Bioinformatics, pp. 52–59. ACM, New York (2006) CrossRefGoogle Scholar
  99. 99.
    Uschold, M., Gruninger, M.: Ontologies and semantics for seamless connectivity. SIGMOD Record 33(4), 58–64 (2004) CrossRefGoogle Scholar
  100. 100.
    Velardi, P., Fabriani, P., Missikoff, M.: Using text processing techniques to automatically enrich a domain ontology. In: Proceedings of the International Conference on Formal Ontology in Information Systems (FOIS) (2001) Google Scholar
  101. 101.
    Vieira, R., Poesio, M.: An empirically based system for processing definite descriptions. Computational Linguistics 26(4), 539–593 (2000) CrossRefGoogle Scholar
  102. 102.
    Vossen, P.: Introduction to EuroWordNet. Computers and the Humanities 32(2–3), 73–89 (1998) CrossRefGoogle Scholar
  103. 103.
    Wermter, J., Hahn, U.: Paradigmatic modifiability statistics for the extraction of complex multi-word terms. In: HLT ’05: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 843–850, Association for Computational Linguistics, Morristown, NJ, USA (2005) Google Scholar
  104. 104.
    Wermter, J., Hahn, U.: You can’t beat frequency (unless you use linguistic knowledge): a qualitative evaluation of association measures for collocation and term extraction. In: ACL ’06: Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the ACL, pp. 785–792, Association for Computational Linguistics, Morristown, NJ, USA (2006) Google Scholar
  105. 105.
    Widdows, D.: Unsupervised method for developing taxonomies by combining syntactic and statistical information. In: Proceedings of HLT/NAACL (2003) Google Scholar
  106. 106.
    Witschel, H.F.: Using decision trees and text mining techniques for extending taxonomies. In: Proceedings of Learning and Extending Lexical Ontologies by using Machine Learning Methods, Workshop at ICML-05 (2005) Google Scholar
  107. 107.
    Xu, F., Kurz, D., Piskorski, J., Schmeier, S.: A domain adaptive approach to automatic acquisition of domain relevant terms and their relations with bootstrapping. In: Proceedings of the 3rd International Conference on Language Resources an Evaluation (LREC’02), Las Palmas, Canary Islands, Spain (2002) Google Scholar
  108. 108.
    Yamada, I., Baldwin, T.: Automatic discovery of telic and agentive roles from corpus data. In: Proceedings of the 18th Pacific Asia Conference on Language, Information and Computation (PACLIC 18) (2004) Google Scholar
  109. 109.
    Yarowsky, D.: Word-sense disambiguation using statistical models of Roget’s categories trained on large corpora. In: Proceedings of COLING-92, Nantes, France (1992) Google Scholar

Copyright information

© Springer-Verlag London 2010

Authors and Affiliations

  • Marek Wisniewski
    • 1
  1. 1.Poznan University of EconomicsPoznanPoland

Personalised recommendations