Advertisement

The Dilated Triple

  • Marko A. RodriguezEmail author
  • Alberto Pepe
  • Joshua Shinavier
Part of the Advanced Information and Knowledge Processing book series (AI&KP)

Abstract

The basic unit of meaning on the Semantic Web is the RDF statement, or triple, which combines a distinct subject, predicate and object to make a definite assertion about the world. A set of triples constitutes a graph, to which they give a collective meaning. It is upon this simple foundation that the rich, complex knowledge structures of the Semantic Web are built. Yet the very expressiveness of RDF, by inviting comparison with real-world knowledge, highlights a fundamental shortcoming, in that RDF is limited to statements of absolute fact, independent of the context in which a statement is asserted. This is in stark contrast with the thoroughly context-sensitive nature of human thought. The model presented here provides a particularly simple means of contextualizing an RDF triple by associating it with related statements in the same graph. This approach, in combination with a notion of graph similarity, is sufficient to select only those statements from an RDF graph which are subjectively most relevant to the context of the requesting process.

Keywords

World Wide Resource Description Framework Uniform Resource Identifier Resource Description Framework Graph Semantic Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aasman, J.: Allegro graph. Technical Report 1, Franz Incorporated (2006). www.franz.com/products/allegrograph/allegrograph.datasheet.pdf
  2. 2.
    Beckett, D.: Turtle: Terse RDF triple language. Technical Report, University of Bristol (2006). http://www.dajobe.org/2004/01/turtle
  3. 3.
    Berners-Lee, T.: Notation 3. Technical Report, World Wide Web Consortium (1998). http://www.w3.org/DesignIssues/Notation3
  4. 4.
    Berners-Lee, T.: Semantic web road map. Technical Report, World Wide Web Consortium (1998) Google Scholar
  5. 5.
    Berners-Lee, T., Cailliau, R., Luotonen, A., Nielsen, H., Secret, A.: The World-Wide Web. Communications of the ACM 37, 76–82 (1994) CrossRefGoogle Scholar
  6. 6.
    Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifier (URI): Generic Syntax (2005). http://www.ietf.org/rfc/rfc2396.txt
  7. 7.
    Berners-Lee, T., Hendler, J.A.: Publishing on the Semantic Web. Nature 410(6832), 1023–1024 (2001). DOI  10.1038/35074206 CrossRefGoogle Scholar
  8. 8.
    Berners-Lee, T., Hendler, J.A., Lassila, O.: The Semantic Web. Scientific American 284(5), 34–43 (2001) CrossRefGoogle Scholar
  9. 9.
    Bizer, C., Heath, T., Idehen, K., Berners-Lee, T.: Linked data on the web. In: Proceedings of the International World Wide Web Conference, Linked Data Workshop. Beijing, China (2008) Google Scholar
  10. 10.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems 30(1–7), 107–117 (1998) CrossRefGoogle Scholar
  11. 11.
    Bush, V.: As we may think. The Atlantic Monthly 176(1), 101–108 (1945) Google Scholar
  12. 12.
    Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and trust. In: The Fourteenth International World Wide Web Conference, Chiba, Japan, pp. 613–622. ACM, New York (2005) Google Scholar
  13. 13.
    Carroll, J.J., Stickler, P.: RDF triples in XML. In: Extreme Markup Languages. IDEAlliance, Montréal, Québec (2004) Google Scholar
  14. 14.
    Cohen, P.R., Kjeldsen, R.: Information retrieval by constrained spreading activation in semantic networks. Information Processing and Management 23(4), 255–268 (1987) CrossRefGoogle Scholar
  15. 15.
    Collins, A., Loftus, E.: A spreading activation theory of semantic processing. Psychological Review 82, 407–428 (1975) CrossRefGoogle Scholar
  16. 16.
    Crestani, F., Lee, P.L.: Searching the web by constrained spreading activation. Information Processing and Management 36(4), 585–605 (2000) CrossRefGoogle Scholar
  17. 17.
    Delugach, H.S.: An exploration into semantic distance. In: Proceedings of the 7th Annual Workshop on Conceptual Structures: Theory and Implementation. Lecture Notes in Computer Science, vol. 754, pp. 119–124. Springer, London (1993). DOI  10.1007/3-540-57454-9_9 CrossRefGoogle Scholar
  18. 18.
    Floridi, L.: Web 2.0 and the semantic web: A philosophical view. In: North-American Computing and Philosophy Conference (2007) Google Scholar
  19. 19.
    Golder, S.A., Huberman, B.A.: Usage patterns of collaborative tagging systems. Journal of Information Science 32(2), 198–208 (2006) CrossRefGoogle Scholar
  20. 20.
    Harnad, S.: Post-Gutenberg galaxy: The fourth revolution in the means of production of knowledge. Public-Access Computer Systems Review 2(1), 39–53 (1991) MathSciNetGoogle Scholar
  21. 21.
    Haveliwala, T.H.: Topic-sensitive pagerank. In: Proceedings of the 11th International World Wide Web Conference, pp. 517–526. ACM, New York (2002) Google Scholar
  22. 22.
    Hayes, J., Gutierrez, C.: Bipartite graphs as intermediate model for RDF. In: Proceedings of the International Semantic Web Conference, pp. 47–61 (2004) Google Scholar
  23. 23.
    Hayes, P., McBride, B.: RDF semantics. Technical Report, World Wide Web Consortium (2004). http://www.w3.org/TR/rdf-mt/
  24. 24.
    Hellman, R.: A semantic approach adds meaning to the web. Computer 32(12), 13–16 (1999) CrossRefGoogle Scholar
  25. 25.
    Heylighen, F.: Collective intelligence and its implementation on the web: Algorithms to develop a collective mental map. Computational and Mathematical Organization Theory 5(3), 253–280 (1999) zbMATHCrossRefGoogle Scholar
  26. 26.
    Kiryakov, A., Ognyanov, D., Manov, D.: OWLIM—a pragmatic semantic repository for OWL. In: International Workshop on Scalable Semantic Web Knowledge Base Systems. Lecture Notes in Computer Science, vol. 3807, pp. 182–192. Springer, New York (2005) Google Scholar
  27. 27.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of the ACM 46(5), 604–632 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Klyne, G., Carroll, J.J.: Resource description framework (RDF): Concepts and abstract syntax. Technical Report, World Wide Web Consortium (2004). http://www.w3.org/TR/rdf-concepts/
  29. 29.
    Lee, R.: Scalability report on triple store applications. Technical Report, Massachusetts Institute of Technology (2004) Google Scholar
  30. 30.
    Magnini, B., Serani, L., Speranza, M.: Making explicit the semantics hidden in schema models. In: Proceedings of the International Semantic Web Conference. Sanibel Island, Florida (2003) Google Scholar
  31. 31.
    Morale, A.A.M., Serodio, M.E.V.: A directed hypergraph model for RDF. In: Simperl, E., Diederich, J., Schreiber, G. (eds.) Proceedings of the Knowledge Web PhD Symposium. Innsbruck, Austria (2006) Google Scholar
  32. 32.
    Nelson, T.H.: Literary Machines. Mindful Press, Sausalito (1981) Google Scholar
  33. 33.
    Newell, A.: The knowledge level. Artificial Intelligence 18(1), 87–127 (1982) CrossRefGoogle Scholar
  34. 34.
    Rodriguez, M.A.: Grammar-based random walkers in semantic networks. Knowledge-Based Systems 21(7), 727–739 (2008). DOI  10.1016/j.knosys.2008.03.030. arXiv:0803.4355 CrossRefGoogle Scholar
  35. 35.
    Rodriguez, M.A., Pepe, A.: On the relationship between the structural and socioacademic communities of an interdisciplinary co-authorship network. Journal of Informetrics 2(3), 195–201 (2008). DOI  10.1016/j.joi.2008.04.002. arXiv:0801.2345 CrossRefGoogle Scholar
  36. 36.
    Rumelhart, D.E., McClelland, J.L.: Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, Cambridge (1993) Google Scholar
  37. 37.
    Sheth, A.P., Ramakrishnan, C., Thomas, C.: Semantics for the semantic web: The implicit, the formal, and the powerful. International Journal on Semantic Web and Information Systems 1, 1–18 (2005) CrossRefGoogle Scholar
  38. 38.
    Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Course Technology (1999) Google Scholar
  39. 39.
    Tierney, B., Jackson, M.: Contextual semantic integration for ontologies. In: Proceedings of the 21st Annual British National Conference on Databases. Edinburgh, UK (2005) Google Scholar
  40. 40.
    Udrea, O., Deng, Y., Ruckhaus, E., Subrahmanian, V.: A graph theoretical foundation for integrating RDF ontologies. In: Proceedings of the American Association for Artificial Intelligence (2005) Google Scholar
  41. 41.
    Uschold, M.: Where are the semantics in the semantic web? In: Proceedings of the Autonomous Agents Conference. Montréal, Québec (2001) Google Scholar
  42. 42.
    W3C/IETF: URIs, URLs, and URNs: Clarifications and recommendations 1.0 (2001). http://www.w3.org/TR/uri-clarification/
  43. 43.
    Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., Hübner, S.: Ontology-based integration of information—a survey of existing approaches. In: Stuckenschmidt, H. (ed.) IJCAI-01 Workshop: Ontologies and Information Sharing, pp. 108–117 (2001) Google Scholar
  44. 44.
    Wilson, R.A.: The evolution of neuro-sociological circuits: A contribution to the sociobiology of consciousness. Ph.D. thesis, Paideia University (1979) Google Scholar
  45. 45.
    Wilson, R.A.: Prometheus Rising. New Falcon, Reno (1983) Google Scholar
  46. 46.
    Wittgenstein, L.: Philosophical Investigations. Blackwell Sci., Oxford (1973) Google Scholar
  47. 47.
    Woods, W.A.: Meaning and links: A semantic odyssey. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Ninth International Conference (KR2004), pp. 740–742 (2004) Google Scholar
  48. 48.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965) MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Zadeh, L.A.: Toward a perception-based theory of probabilistic reasoning with imprecise probabilities. Journal of Statistical Planning and Inference 105, 233–264 (2002) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2010

Authors and Affiliations

  • Marko A. Rodriguez
    • 1
    Email author
  • Alberto Pepe
    • 2
  • Joshua Shinavier
    • 3
  1. 1.T-5, Center for Nonlinear StudiesLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Center for Embedded Networked SensingUniversity of California at Los AngelesLos AngelesUSA
  3. 3.Semantic Network Research GroupKnowledge Reef Systems Inc.Santa FeUSA

Personalised recommendations