Skip to main content

Algae Technology

  • Chapter

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Billions of years ago the Earth’s atmosphere was filled with CO2. Thus there was no life on the planet. Life on Earth started with Cyanobacterium and algae. These humble photosynthetic organisms sucked out the atmospheric CO2 and started releasing oxygen. As a result, the levels of CO2 started decreasing to such an extent that life evolved on Earth. Once again these smallest organisms are poised to save us from the threat of global warming.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Becker, E. W. 1994. Photobioreactors: production systems for photo-trophic microorganisms. In: Baddiley, J., Carey, N. H., Higgins, I. J., Potter, W. G. (eds.). Microalga: Biotechnology and Microbiology. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Benemann, J. R., Augenstein, D. C., Weissman, J. C. 1982. Microalgae as a source of liquid fuels, appendix: technical feasibility analysis. Final Report to the US Department of Energy.

    Google Scholar 

  • Benemann, J. R. 2008. Open ponds and closed photobioreactors – comparative economics. 5th Annual World Congress on Industrial Biotechnology and Bioprocessing. Chicago, 30 April 2008.

    Google Scholar 

  • Biopact. 2008. An in-depth look at biofuels from algae. Available at http://news.mongabay.com/bioenergy/2007/01/in-depth-look-at-biofuels-from-algae.html. Last accessed 18 December 2009.

  • Borowitzka, M. A. 1999. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321.

    Article  Google Scholar 

  • Bosma, R., van Spronsen, W. A., Tramper, J., Wijffels, R. H. 2003. Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol 15:143–153.

    Article  Google Scholar 

  • Brown, L. M., Zeiler, B. G. 1993. Aquatic biomass and carbon dioxide trapping. Energy Convers Manage 34:1005–1013.

    Article  Google Scholar 

  • Campbell, M. N. 2008. Biodiesel: algae as a renewable source for liquid fuel. Guelph Eng J 1:2–7.

    Google Scholar 

  • Carlsson, A. S., van Beilen, J. B., Möller, R., Clayton, D. 2007. Micro- and macro-algae: utility for industrial applications. In: Bowles, D. (ed.). Outputs from the EPOBIO: Realising the Economic Potential of Sustainable Resources – Bioproducts from Non-food Crops Project, CNAP, University of York, UK.

    Google Scholar 

  • Carvalho, A. P., Meireles, L. A., Malcata, F. X. 2006. Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506.

    Google Scholar 

  • Chaumont, D. 1993. Biotechnology of algal biomass production: a review of systems for outdoor mass culture. J Appl Phycol 5:593–604.

    Article  Google Scholar 

  • Chisti, Y. 2006. Microalgae as sustainable cell factories. Environ Eng Manage J 5:261–274.

    Google Scholar 

  • Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol Adv 25:294–306.

    Article  Google Scholar 

  • Choi, S. L., Suh, I. S., Lee, C. G. 2003. Lumostatic operation of bubble column photobioreactors for Haematococcus pluvialis cultures using a specific light uptake rate as a control parameter. Enzyme Microbial Technol 33:403–409.

    Article  Google Scholar 

  • Cohen, E., Koren, A., Arad, S. M. 1991. A closed system for outdoor cultivation of microalgae. Biomass Bioenergy 1:83–88.

    Article  Google Scholar 

  • Csordas, A., Wang, J. K. 2004. An integrated photobioreactor and foam fractionation unit for the growth and harvest of Chaetoceros spp. in open systems. Aquacult Eng 30:15–30.

    Article  Google Scholar 

  • Demirbas, A. 2006. Oily products from mosses and algae via pyrolysis. Energy Sources A 28:933–940.

    Article  Google Scholar 

  • Demirbas, A. H. 2009a. Inexpensive oil and fats feedstocks for production of biodiesel. Energy Educ Sci Technol A 23:1–13.

    Google Scholar 

  • Demirbas, A. 2009b. Production of biodiesel from algae oils. Energy Sources A 31:163–168.

    Article  Google Scholar 

  • Demirbas, A. H. 2009c. Inexpensive oil and fats feedstocks for production of biodiesel. Energy Educ Sci Technol A 23:1–13.

    Google Scholar 

  • Dimitrov, K. 2008. Green fuel technologies: a case study for industrial photosynthetic energy capture. Brisbane, Australia. Available at http://www.nanostring.net/Algae/.

    Google Scholar 

  • Dunahay, T. G., Jarvis, E. E., Dais, S. S., Roessler, P. G. 1996. Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol 57–58:223–231.

    Article  Google Scholar 

  • Goldman, J. C., Ryther, J. H. 1977. Mass production of algae: bio-engineering aspects. In: Mitsui, A. et al. (eds.). Biological Solar Energy Conversion, Academic, New York.

    Google Scholar 

  • Grobbelaar, J. U. 2004. Algal nutrition. In: Richmond, A. (ed.). Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell, London.

    Google Scholar 

  • Haesman, M., Diemar, J., O’Connor, W., Soushames, T., Foulkes, L. 2000. Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs – a summary. Aquacult Res 31:637–659

    Article  Google Scholar 

  • Hankamer, B., Lehr, F., Rupprecht, J., Mussgnug, J. H., Posten, C., Kruse, O. 2007. Photosynthetic biomass and H production by green algae: from bioengineering to bioreactor scale up. Phys Plant 131:10–21.

    Article  Google Scholar 

  • Janssen, M., Tramper, J., Mur, L. R., Wijffels, R. H. 2003. Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up and future prospects. Biotechnol Bioeng 81:193–210.

    Article  Google Scholar 

  • Knuckey, R. M., Brown, M. R., Robert, R., Frampton, D. M. F. 2006. Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacult Eng 35:300–313.

    Article  Google Scholar 

  • Lee, Y. 2001. Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315.

    Article  Google Scholar 

  • McHugh, D. J. 2003. A guide to the seaweed industry. FAO Fisheries Technical Paper No. 441. FAO, Rome.

    Google Scholar 

  • Molina Grima, E. 1999. Microalgae, mass culture methods. In: Flickinger, M. C., Drew, S. W. (eds.). Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation, vol. 3. Wiley, New York.

    Google Scholar 

  • Molina Grima, E., Acién Fernández, F. G., García Camacho, F., Chisti, Y. 1999. Photobioreactors: light regime, mass transfer, and scaleup. J Biotechnol 70:231–247.

    Article  Google Scholar 

  • Molina Grima, E. M., Belarbi, E. H., Fernandez, F. G. A., Medina, A. R., Chisti, Y. 2003. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515.

    Article  Google Scholar 

  • Ogbonna, J. C., Tanaka, H. 1997. Industrial-size photobioreactors. Chemtech 27:43–49.

    Google Scholar 

  • Oswald, W. J., Golueke, C. G. 1960. Biological transformation of solar energy. Adv Appl Microbiol 11:223–242.

    Article  Google Scholar 

  • Ozkurt, I. 2009. Qualifying of safflower and algae for energy. Energy Educ Sci Technol A 23:145–151.

    Google Scholar 

  • Patil, V., Reitan, K. I., Knudsen, G., Mortensen, L., Kallqvist, T., Olsen, E., Vogt, G., Gislerød, H. R. 2005. Microalgae as source of polyunsaturated fatty acids for aquaculture. Curr Topics Plant Biol 6:57–65.

    Google Scholar 

  • Patil, V., Tran, K.-Q., Giselrød, H. R. 2008. Towards sustainable production of biofuels from microalgae. Int J Mol Sci 9:1188–1195.

    Article  Google Scholar 

  • Pimentel, D., Berger, B., Filiberto, D., Newton, M., Wolfe, B., Karabinakis, B., Clark, S., Poon, E., Abbett, E., Nandagopal, S. 2004. Water resources: agricultural and enveronmental issues. Biosci 54: 909–918.

    Article  Google Scholar 

  • Pimentel, D. (ed.). 2008. Biofuels, solar and wind as renewable energy systems: benefits and risks. Springer, New York.

    Google Scholar 

  • Pirt, S. J. 1986. The thermodynamic efficiency (quantum demand) and dynamics of photosynthetic growth. Appl Phycol 13:307–315.

    Google Scholar 

  • Poelman, E., DePauw, N., Jeurissen, B. 1997. Potential of electrolytic flocculation for recovery of micro-algae. Resour Conserv Recyc 19:1–10.

    Article  Google Scholar 

  • Pulz, O. 2001. Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293.

    Article  Google Scholar 

  • Pulz, O. 2007. Evaluation of greenfuel’s 3D matrix algal growth engineering scale unit: APS Redhawk Unit, Phoenix, AZ, IGV Institut für Getreideverarbeitung GmbH, June–July 2007.

    Google Scholar 

  • Richmond, A. 2004. Principles for attaining maximal microalgal productivity in photobioreactors: an overview. Hydrobiologia 512:33–37.

    Article  Google Scholar 

  • Riesing, T. 2006. Cultivating algae for liquid fuel production. http://oakhavenpc.org/cultivating_algae.htm. Accessed February 2008.

  • Rossignol, N., Lebeau, T., Jaouen, P., Robert, J. M. 2000. Comparison of two membrane-photobioreactors, with free or immobilized cells, for the production of pigments by a marine diatom. Bioproc Eng 23:495–501.

    Article  Google Scholar 

  • Roessler, P. G., Brown, L. M., Dunahay, T. G., Heacox, D. A., Jarvis, E. E., Schneider, J. C., Talbot, S. G., Zeiler, K. G. 1994. Genetic-engineering approaches for enhanced production of biodiesel fuel from microalgae. ACS Symp Ser 566:255–270.

    Article  Google Scholar 

  • Sananurak, C., Lirdwitayaprasit, T., Menasveta, P. 2009. Development of a closed-recirculating, continuous culture system for microalga (Tetraselmis suecica) and rotifer (Brachionus plicatilis) production. Sci Asia 35:118–124.

    Article  Google Scholar 

  • Sánchez Mirón, A., Contreras Gómez, A., García Camacho, F., Molina Grima, E., Chisti, Y. 1999. Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70:249–270.

    Article  Google Scholar 

  • Sato, T., Usui, S., Tsuchiya, Y., Yutaka, K. 2006. Invention of outdoor closet type photobioreactor for microalgae. Energy Convers Manage 47:791–799.

    Article  Google Scholar 

  • Schneider, D. 2006. Grow your own? Would the widespread adoption of biomass-derived transportation fuels really help the environment? Am Sci 94:408–409.

    Google Scholar 

  • Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U., Mussgnug, J. H., Posten, C., Kruse, O., Hankamer, B. 2008. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43.

    Article  Google Scholar 

  • Scott, A., Bryner, M. 2006. Alternative fuels: rolling out next-generation technologies. Chem Week December 20–27:17–21.

    Google Scholar 

  • Sheehan, J., Dunahay, T., Benemann, J., Roessler, P. 1998. A look back at the U.S. Department of Energy’s Aquatic Species Program – Biodiesel from Algae. National Renewable Energy Laboratory (NREL) Report: NREL/TP-580-24190. Golden, CO.

    Book  Google Scholar 

  • Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A. 2006. Commercial applications of microalgae. J Biosci Bioeng 101:87–96.

    Article  Google Scholar 

  • Terry, K. L., Raymond, L. P. 1985. System design for the autotrophic production of microalgae. Enzyme Microb Technol 7:474–487.

    Article  Google Scholar 

  • Tredici, M. 1999. Bioreactors, photo. In: Flickinger, M. C., Drew, S. W. (eds.). Encyclopedia of Bioprocess Technology, Fermentation, Biocatalysis and Bioseparation. Wiley, New York.

    Google Scholar 

  • Ugwu, C. U., Aoyagi, H., Uchiyama, H. 2008. Photobioreactors for mass cultivation of algae. Biores Technol 99:4021–4028.

    Article  Google Scholar 

  • Viswanathan, B. 2006. An introduction to energy sources. Indian Institute of Technology, Madras, India.

    Google Scholar 

  • Wang, B., Li, Y., Wu, N., Lan, C. Q. 2008. CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718.

    Article  Google Scholar 

  • Weissman, J. C., Goebel, R. P. 1987. Design and analysis of pond systems for the purpose of producing fuels. Report, Solar Energy Research Institute, SERI/STR-231-2840, Golden, CO.

    Google Scholar 

  • Weissman, J., Goebel, R. P., Benemann, J. R. 1988. Photobioreactor design: mixing, carbon utilization, and oxygen accumulation. Biotechnol Bioeng 31:336–344.

    Article  Google Scholar 

  • Wijffels, R. H. 2008. Potential of sponges and microalgae for marine biotechnology. Trends Biotechnol 26:26–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Demirbas, A., Demirbas, M. (2010). Algae Technology. In: Algae Energy. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-84996-050-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-050-2_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-049-6

  • Online ISBN: 978-1-84996-050-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics