Skip to main content

Domain Wall Engineering in Lead-Free Piezoelectric Materials and Their Enhanced Piezoelectricities

  • Chapter

Abstract

The engineered domain configurations were induced in barium titanate (BaTiO3) single crystals, and their piezoelectric properties were investigated as a function of the domain size (domain wall density). As a result, it was revealed that the piezoelectric properties were strongly dependent on the domain sizes (domain wall density), i.e., the piezoelectric properties significantly increased with decreasing domain size. The calculated d 31 of the [111]c oriented tetragonal BaTiO3 single-domain crystal was –62 pC/N, while the measured value of the [111]c poled tetragonal BaTiO3 crystal with a domain size of 3 μm was –243.2 pC/N, i.e. an increase of four-fold. When the much finer domain size (below 1 μm) can be induced in the [001]c poled orthorhombic BaTiO3 crystals, the significantly enhanced piezoelectric properties can be expected.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jaffe B, Cook, Jr WR, Jaffe H (1971) Piezoelectric Ceramics. New York, Academic Press

    Google Scholar 

  2. Nakamura K, Shimizu H (1983) Poling of Ferroelectric Crystals by using Interdigital Electrodes and Its Application to Bulk-wave Transformer. Proc 1983 IEEE Ultrasonic Symp: 527-530

    Google Scholar 

  3. Nakamura K, Ando H, Shimizu H (1986) Partial Domain Inversion in LiNbO3 Plates and Its Applications to Piezoelectric Devices. Proc. 1986 IEEE Ultrasonic Symp: 719-722

    Google Scholar 

  4. Lim EJ, Fejer MM, Byer RL, Kozlovsky WJ (1989) Blue Light Generation by Frequency Doubling in Periodically Poled Lithium Niobate Channel Waveguide. Electron Lett 25:731-732

    Article  Google Scholar 

  5. Webjorn J, Laurell F, Arvidsson G (1989) Blue Light Generated by Frequency Doubling of Laser Diode Light in a Lithium Niobate Channel Waveguide. IEEE Photonics Technol Lett 1:316-318

    Article  Google Scholar 

  6. Hiranaga Y, Fujimoto K, Cho Y, Wagatsuma Y, Onoe A, Terabe K, Kitamura K (2002) Nano-Sized Inverted Domain Formation in Stoichiometric LiTaO3 Single Crystal using Scanning Nonlinear Dielectric Microscopy. Integrated Ferro 49:203-209

    Article  Google Scholar 

  7. Cho Y, Hiranaga Y, Fujimoto K, Wagatsuma Y, Ones A, Terabe K, Kitamura K (2003) Tbit/inch2 Ferroelectric Data Storage Based on Scanning Nonlinear Dielectric Microscopy. Trans Mater Res Soc Jpn 28:109-112

    Google Scholar 

  8. Terabe K, Higuchi S, Takekawa S, Nakamura M, Goto Y, Kitamura K (2003) Nanoscale Domain Engineering of a Sr0.61Ba0.39Nb2O6 Single Crystal using a Scanning Force Microscope. Ferroelectrics 292:83-89

    Article  Google Scholar 

  9. Park S-E, Mulvihill KL, Lopath PD, Zipparo M, Shrout TR (1996) Crystal Growth and Ferroelectric Related Properties of (1-x)Pb(A1/3Nb2/3)O3 – xPbTiO3 (A=Zn2+ , Mg2+ ). Proc 10th IEEE Int Symp Applications of Ferroelectrics 1:79-82

    Google Scholar 

  10. Wada S, Park S-E, Cross LE, Shrout TR (1998) Domain Configuration and Ferroelectric Related Properties of Relaxor Based Single Crystals. J Korean Phys Soc 32:S1290-S1293

    Google Scholar 

  11. Wada S, Park E-E, Cross LE, Shrout TR (1999) Engineered Domain Configuration in Rhombohedral PZN-PT Single Crystals and Their Ferroelectric Related Properties. Ferroelectrics 221:147-155

    Article  Google Scholar 

  12. Wada S, Tsurumi T (2004) Enhanced Piezoelectric Property of Barium Titanate Single Crystals with Engineered Domain Configurations. Br Ceram Trans 103:93-96

    Article  Google Scholar 

  13. Wada S, Yako K, Kakemoto H, Tsurumi T, Erhart J (2004) Enhanced Piezoelectric Property of Barium Titanate Single Crystals with the Different Domain Sizes. Key Eng Mater 269:19-22

    Article  Google Scholar 

  14. Wada S, Suzuki S, Noma T, Suzuki T, Osada M, Kakihana M, Park E-E, Cross LE, Shrout TR (1999) Enhanced Piezoelectric Property of Barium Titanate Single Crystals with Engineered Domain Configurations. Jpn J Appl Phys 38:5505-5511

    Article  Google Scholar 

  15. Zgonik M, Bernasconi P, Duelli M, Schlesser R, Gunter P, Garrett MH, Rytz D, Zhu Y, Wu X (1994) Dielectric, Elastic, Piezoelectric, Electro-optic, and Elasto-optic Tensors of BaTiO3 Crystals. Phys Rev B 50:5941-5949

    Article  Google Scholar 

  16. Park S-E, Shrout TR (1997) Ultrahigh Strain and Piezoelectric Behavior in Relaxor Based Ferroelectric Single Crystals. J Appl Phys 82:1804-1811

    Article  Google Scholar 

  17. Wada S, Kakemoto H, Tsurumi T, Park S-E, Cross LE, Shrout TR (2002) Enhanced Ferroelectric Related Behaviors of Ferroelectric Single Crystals using the Domain Engineering. Trans Mater Res Soc Jpn 27:281-286

    Google Scholar 

  18. Park S-E, Wada S, Cross LE, Shrout TR (1999) Crystallographically Engineered BaTiO3 Single Crystals for High-performance Piezoelectrics. J Appl Phys 86:2746-2750

    Article  Google Scholar 

  19. Wada S, Tsurumi T (2001) Domain Configurations of Ferroelectric Single Crystals and Their Piezoelectric Properties. Trans Mater Res Soc Jpn 26:11-14

    Google Scholar 

  20. Fousek J (1971) Permissible Domain Walls in Ferroelectric Species. Czech J Phys B21:955-968

    Article  Google Scholar 

  21. Wahlstrom EE (1979) Optical Crystallography. New York, John Wiley and Sons

    Google Scholar 

  22. Wada S, Yako K, Kiguchi T, Kakemoto H, Tsurumi T (2005) Enhanced Piezoelectric Properties of Barium Titanate Single Crystals with the Different Engineered Domain Sizes. J Appl Phys 98:014109

    Article  Google Scholar 

  23. (1976) IEEE Standard on Piezoelectricity, American National Standard Institute

    Google Scholar 

  24. Fousek J, Litvin DB, Cross LE (2003) Domain Geometry Engineering and Domain Average Engineering of Ferroics. J Phys Condens Matter 13:L33-L38; Fousek J, Cross LE (2003) Open Issues in Application Aspects of Domains in Ferroic Materials. Ferroelectrics 293:43-60

    Google Scholar 

  25. Damjanovic D (1998) Rep Prog Phys 61:1267

    Article  Google Scholar 

  26. Ishibashi Y, Salje E (2002) A Theory of Ferroelectric 90 Degree Domain Wall. J Phys Soc Jpn 71:2800-2803

    Article  Google Scholar 

  27. Setter N (2002) Piezoelectric Materials in Devices. Lausanne, ed. N. Setter. 1

    Google Scholar 

  28. Meyer B, Vanderbilt D (2002) Ab Initio Study of Ferroelectric Domain Walls in PbTiO3. Phys Rev B 65:104111

    Article  Google Scholar 

  29. Budimir M, Damjanovic D, Setter N (2003) Piezoelectric Anisotropy-Phase Transition Relations in Perovskite Single Crystals. J Appl Phys 94:6753-6761

    Article  Google Scholar 

  30. Chaib H, Schlaphof F, Otto T, Eng LM (2003) Electric and Optical Properties of the 90˚ Ferroelectric Domain Wall in Tetragonal Barium Titanate. J Phys Condens Matter 15:1-14

    Article  Google Scholar 

  31. Shilo D, Ravichandran G, Bhattacharya K (2004) Investigation of Twin-wall Structure at the Nanometer Scale using Atomic Force Microscopy. Nature Mater. 3:453-457

    Article  Google Scholar 

  32. Tsuji T, Ogiso H, Akedo J, Saito S, Fukuda K, Yamanaka K (2004) Evaluation of Domain Boundary of Piezo/Ferroelectric Material by Ultrasonic Atomic Force Microscopy. Jpn J Appl Phys 43:2907-2913

    Article  Google Scholar 

  33. Ishibashi Y (2004) Private Communication

    Google Scholar 

  34. Park S-E, Shrout TR (1997) IEEE Trans Ultrason Ferroelectr & Freq Control 44:1140

    Article  Google Scholar 

  35. Arlt G, Hennings D, de With G (1985) Dielectric Properties of Fine-grained Barium Titanate Ceramics. J Appl Phys 58:1619-1625 Domain Wall Engineering in Lead-Free Piezoelectric Materials

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Wada, S. (2010). Domain Wall Engineering in Lead-Free Piezoelectric Materials and Their Enhanced Piezoelectricities. In: Higuchi, T., Suzumori, K., Tadokoro, S. (eds) Next-Generation Actuators Leading Breakthroughs. Springer, London. https://doi.org/10.1007/978-1-84882-991-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-991-6_20

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-990-9

  • Online ISBN: 978-1-84882-991-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics