Skip to main content

Surface Acoustic Wave Motor Modeling and Motion Control

  • Chapter
Next-Generation Actuators Leading Breakthroughs
  • 1724 Accesses

Abstract

For miniaturization of ultrasonic transducers, a surface acoustic wave device has an advantage in rigid mounting and high-power-density operation. A surface acoustic wave (SAW) motor has been investigated, and its superior performances have been demonstrated. From investigations based on experiments, it was found that slider surface texture affects motor performances such as speed and thrust. Theoretically, however, the effect of the physical property of a slidertextured surface on motor performance had not been investigated sufficiently. A physical modeling of the SAW motor has been attempted, one slider projection was modeled including the compliance of the slider and stator materials, and also the stick and slip at the boundary. Using the slider projection modeling, operations of the SAW motor were simulated, and then, the results were compared with the experimental results. For servo control system application, a feed back controller compensating a nonlinear dead zone of the motor is reported. The feed back controller is simple and very effective. For an advanced motion control, a precise modeling of the SAW motor has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kurosawa M, Takahashi M, Higuchi T (1996) Ultrasonic linear motor using surface acoustic wave. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43(5): 901-906

    Article  Google Scholar 

  2. Kurosawa MK, Takahashi M, Higuchi T (1998) Elastic contact conditions to optimize friction drive of surface acoustic wave motor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(5): 1229-1237

    Article  Google Scholar 

  3. Asai K, Kurosawa MK and Higuchi T (2000) Evaluation of the driving performance of a surface acoustic wave linear motor. Proc. IEEE Ultrasonics Symp.: 675-679

    Google Scholar 

  4. Kurosawa MK, Itoh H, Asai K, Takasaki M, Higuchi T (2001) Optimization of slider contact face geometry for surface acoustic wave motor. Proc. of IEEE MEMS: 252-255

    Google Scholar 

  5. Nakamura N, Kurosawa MK, Shigematsu T, Asai K (2003) Effects of ceramic thin film coating on friction surfaces for surface acoustic wave linear motor. Proc. IEEE Ultrasonics Symp.: 1766-1769

    Google Scholar 

  6. Shigematsu T, Kurosawa MK, Asai K (2003) Nanometer stepping drives of surface acoustic wave motor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(4): 376-385

    Article  Google Scholar 

  7. Shigematsu T, Kurosawa MK, Asai K (2003) Sub-nanometer stepping drive of surface acoustic wave motor. Proc. IEEE-NANO: 299-302

    Google Scholar 

  8. Shigematsu T, Kurosawa MK (2006) IEEJ Trans. Sens. Micromach., 126-E: 166

    Google Scholar 

  9. Iseki T, Shigematsu T, Okumura M, Sugawara T, Kurosawa MK (2006) Two-dimensionally self-holding deflection mirror using surface acoustic wave motor. Opti. Rev. 13: 195-200

    Article  Google Scholar 

  10. Asai K, Kurosawa MK (2003) Energy circulation methods for surface acoustic wave motor. IEICE Trans. Fundam., J86-A: 345-353 [in Japanese]

    Google Scholar 

  11. Kurosawa MK, Miyazaki Y, Shigematsu T (2007) Study of scattering by surface acoustic wave motor slider using finite element method simulation. J. Jpn. Appl. Phys. 46: 4915-4920

    Google Scholar 

  12. Asai K, Kurosawa MK (2003) Simulation model of surface acoustic wave motor considering tangential rigidity. IEICE Trans. Fundam., J86-A: 1442-1452 [in Japanese]

    Google Scholar 

  13. Shigematsu T, Kurosawa MK (2006) Friction drive modeling of SAW motor using classical theory of contact mechanics. Proc. Actuators: 444-447

    Google Scholar 

  14. Asai K, Kurosawa MK, Higuchi T (2004) Energy circulation methods for surface acoustic wave motor. Electronics and Communications in Japan, Part 3, 87(2): 345-353

    Google Scholar 

  15. Suzuki T, Kurosawa MK, Asai K (2005) Control of a surface acoustic wave motor using PID controller. Proceedings of LDIA: 326-329

    Google Scholar 

  16. Kurosawa MK, Suzuki T, Asai K (2007) Surface acoustic wave motor using feed back controller with dead zone linearization, J. Jpn. AEM, 15(2): 125-131 (in Japanese)

    Google Scholar 

  17. Shigematsu T, Kurosawa MK (2008) Friction Drive of an SAW motor Part I: Measurements, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, (57)9: 2005-2015

    Article  Google Scholar 

  18. Shigematsu T, Kurosawa MK (2008) Friction Drive of an SAW motor Part II: Analyses, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, (57)9: 2016-2024

    Article  Google Scholar 

  19. Shigematsu T, Kurosawa MK (2008) Friction Drive of an SAW motor Part III: Modeling, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, (57)10: 2266-2276

    Article  Google Scholar 

  20. Shigematsu T, Kurosawa MK (2008) Friction Drive of an SAW motor Part IV: Physics of Contact, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, (57)10: 2277-2287

    Article  Google Scholar 

  21. Shigematsu T, Kurosawa MK (2008) Friction Drive of an SAW motor Part V: Design Criteria, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, (57)10: 2288-2297

    Article  Google Scholar 

  22. Johnson KL (1985) Contact Mechanics. Cambridge University Press, Cambridge, U.K.

    MATH  Google Scholar 

  23. Asai K, Kurosawa MK (2002) Performance estimation of surface acoustic wave motor using simulation model of friction drive. IEICE Trans. Fundam., J85-A: 1428-1439 [in Japanese]

    Google Scholar 

  24. Mano T, Tsukimoto T, Miyake A (1992) IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39: 668

    Article  Google Scholar 

  25. Kurosawa MK, Itoh H, Asai K (2001) Influence of elastic deformation in surface acoustic wave motor friction drive. Proc. Transducers: 726-729

    Google Scholar 

  26. Kurosawa MK, Itoh H, Asai K (2003) Elastic friction drive of surface acoustic wave motor, Ultrasonics 41(4): 271-275

    Article  Google Scholar 

  27. Hull R (ed) (1999) Properties of Crystalline Silicon. Inspec, London

    Google Scholar 

  28. Kushibiki J, Takanaga I, Arakawa M, Sannomiya T (1999) IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46: 1315

    Article  Google Scholar 

  29. Kurosawa MK, Shigematsu T (2008) Friction drive simulation of surface acoustic wave motor characteristics based on contact mechanics, Jpn. J. Appl. Phys., 47(5): 4287-4291

    Article  Google Scholar 

  30. Okano M, Kurosawa MK (2007) Study on modeling of surface acoustic wave motor. Proc. of IEEE Int. Symp. on Industrial Electronics: 1508-1513

    Google Scholar 

  31. Okano M, Kurosawa MK (2008) Model based position control of surface acoustic wave motor. Proc. of Actuator: 172-175

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Kurosawa, M. (2010). Surface Acoustic Wave Motor Modeling and Motion Control. In: Higuchi, T., Suzumori, K., Tadokoro, S. (eds) Next-Generation Actuators Leading Breakthroughs. Springer, London. https://doi.org/10.1007/978-1-84882-991-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-991-6_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-990-9

  • Online ISBN: 978-1-84882-991-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics