Skip to main content

Application of Robust Fixed Point Transformations for Technological Operation of Robots

  • Conference paper
Robot Motion and Control 2009

Introduction

A robot’s drive has to exert appropriate driving forces that can keep its arm and end effector at the proper position, velocity and acceleration, and simultaneously has to compensate for the effects of the contact forces arising between the tool and the workpiece depending on the needs of the actual technological operation. Balancing the effects of a priori unknown external disturbance forces and the inaccuracies of the available dynamic model of the robot is also important. Technological tasks requiring well prescribed end effector trajectories and contact forces simultaneously are challenging control problems that can be tackled in various manners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mosca, E., Zhang, J.: Stable design of predictive control. Automatica 28, 1229–1233 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Varga, A., Lantos, B.: Predictive Control of Powered Lower Limb Prosthetic. In: Proceedings of International Conference of Climbing and Walking Robots, CLAWAR, Brussels, Belgium, pp. 204–214 (2006)

    Google Scholar 

  3. Varga, A., Lantos, B.: Eigenvalue Properties of Discrete Time Linear Receding Horizon Control Systems. In: Proceedings of IEEE International Conference on Mechatronics, Budapest, Hungary, pp. 531–536 (2006)

    Google Scholar 

  4. Márton, L.: Robust-Adaptive Control of Nonlinear Singlevariable Mechatronic Systems. PhD Thesis, Budapest University of Technology and Economy (BUTE), Budapest, Hungary (2006)

    Google Scholar 

  5. Emelyanov, S.V.: Variable Structure Control. Nauka, Moscow (1967)

    Google Scholar 

  6. Emelyanov, S.V., Korovin, S.K., Levantovsky, L.V.: Higher order sliding regimes in the binary control systems. Soviet Physics, Doklady 31, 291–293 (1986)

    Google Scholar 

  7. Levant, A.: Arbitrary-order sliding modes with finite time convergence. In: Proceedings of the 6th IEEE Mediterranean Conference on Control and Systems, Alghero, Sardinia, Italy, June 9-11 (1998)

    Google Scholar 

  8. Freeman, R.A., Kokotović, P.V.: Robust Nonlinear Control Design. In: State-Space and Lyapunov Techniques, Birkhäuser, Basel (1996)

    Google Scholar 

  9. Slotine Jean-Jacques, E., Li, W.: Applied Nonlinear Control. Prentice Hall International, Inc., Englewood Cliffs (1991)

    MATH  Google Scholar 

  10. Lyapunov, A.M.: A general task about the stability of motion (in Russian), PhD Thesis (1892)

    Google Scholar 

  11. Lyapunov, A.M.: Stability of motion. Academic Press, New-York (1966)

    MATH  Google Scholar 

  12. Lagrat, I., El Ougli, A., Boumhidi, I.: Optimal Adaptive Fuzzy Control for a Class of Unknown Nonlinear Systems. WSEAS Transactions on Systems and Control 3(2), 89–98 (2008)

    Google Scholar 

  13. Tar, J.K., Rudas, I.J., Hermann, G., Bitó, J.F., Tenreiro Machado, J.A.: On the Robustness of the Slotine-Li and the FPT/SVD-based Adaptive Controllers. WSEAS Transactions on Systems and Control 3(9), 686–700 (2008)

    Google Scholar 

  14. Tar, J.K.: Fixed Point Transformations as Simple Geometric Alternatives in Adaptive Control. Invited plenary lecture. In: Proc. of the 5th IEEE International Conference on Computational Cybernetics, Gammarth, Tunis, October 19–21, pp. 19–34 (2007)

    Google Scholar 

  15. Andoga, R., Madarász, L., Főző, L.: Situational Modeling and Control of a Small Turbojet Engine MPM 20. In: Proc. of the IEEE International Conference on Computational Cybernetics, Tallinn, Estonia, 20-22 August, pp. 81–85 (2006)

    Google Scholar 

  16. Tar, J.K., Rudas, I.J., Pátkai, B.: Comparison of Fractional Robust- and Fixed Point Transformations-Based Adaptive Compensation of Dynamic Friction. Journal of Advanced Computational Intelligence and Intelligent Informatics (JACIII) 11(9) (2007)

    Google Scholar 

  17. Tar, J.K., Bitó, J.F., Rudas, I.J., Kozłowski, K.R., Tenreiro Machado, J.A.: Possible Adaptive Control by Tangent Hyperbolic Fixed Point Transformations Used for Controlling the Φ6-Type Van der Pol Oscillator. In: Proc. of the 6th IEEE International Conference on Computational Cybernetics (ICCC 2008), Stará Lesná, Slovakia, November 27–29, 2008, pp. 15–20 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer London

About this paper

Cite this paper

Tar, J.K., Rudas, I.J., Kozłwski, K.R., Machado, J.A.T. (2009). Application of Robust Fixed Point Transformations for Technological Operation of Robots. In: Kozłowski, K.R. (eds) Robot Motion and Control 2009. Lecture Notes in Control and Information Sciences, vol 396. Springer, London. https://doi.org/10.1007/978-1-84882-985-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-985-5_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-984-8

  • Online ISBN: 978-1-84882-985-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics