Skip to main content

A Modular Concept for a Biologically Inspired Robot

  • Conference paper
Robot Motion and Control 2009

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 396))

Motivation

Many climbing robots are specialized for a certain substrate like glass-like Stickybot [20] (suction mechanisms or adhesive mechanisms) or porous substrates like Spinybot [21] (claw-like mechanisms). Thus, these robots are often expensive mechatronical systems. One possibility to gain more flexibility in application and to reduce costs is to modularize such systems. On the one hand we have to achieve high flexibility in application, but on the other hand we need a high performance robotic system. A major challenge is to do the step from specialists to generalists in climbing robots.

Common goals for mobile robots are locomotion, ideomotion, manipulation, navigation, orientation, imitation, and cooperation. For a climbing robot, the demand in locomotion is high locomotion ability. Climbing is locomotion by generation of directed body motion and of substrate contact in alternating combination. The robot has to move horizontally and vertically, ascending and descending – an interesting challenge for biologically inspired robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Neumann, D., Bechert, D., et al.: Technologieanalyse Bionik. In: Analyse und Bewertung zukünftiger Technologien, ed. V.-T. im Auftrag des BMBFT, p. 123. VDI-Technologiezentrum Düsseldorf (1993)

    Google Scholar 

  2. Renjewski, A., Seyfarth, A., Manoonpong, P., Woergoetter, F.: From Biomechanical Concepts Towards Fast And Robust Robots. In: Advances in Mobile Robotics, pp. 630–633. World Scientific Publishing Co. Pte. Ltd, Singapore (2008)

    Google Scholar 

  3. Fischer, M.S., Lehmann, R.: Application of cineradiography for metric and kinematic study of in-phase gaits during locomotion of pika (Ochotona rufescens, Mammalia, Lagomorpha). Zoology 101, 148–173 (1998)

    Google Scholar 

  4. Witte, H., Hoffmann, H., Hackert, R., Schilling, C., Fischer, M.S., Preuschoft, H.: Biomi-metic robotics should be based on functional morphology. J. Anat. 204, 331–342 (2004)

    Article  Google Scholar 

  5. Schilling, C., Fetter, R., Maempel, J., Schade, J., Kempf, W., Voges, D., Hill, B., Witte, H.: Towards a bionic algorithm. In: Scharff, P. (ed.) Proc. 3rd Int. Symp. on Adaptive Motion in Animals and Machines AMAM, p. 3. Isle Verlag, Germany

    Google Scholar 

  6. Hackert, R., Witte, H., Fischer, M.S.: Interactions between motions of the trunk and the angle of attack of the forelimbs in synchronous gaits of the pika (Ochoctona rufescens). In: Kimura, H., Tsuchiya, K., Ishiguro, A., Witte, H. (eds.) Adaptive motion of animals and machines, pp. 69–77. Springer, New York (2006)

    Chapter  Google Scholar 

  7. Witte, H., Hackert, R., Ilg, W., Biltzinger, J., Schilling, N., Biedermann, F., Jergas, M., Preu-schoft, H., Fischer, M.S.: Quadrupedal Mammals as Paragons for Walking Machines. In: Proc. AMAM - Adaptive Motion in Animals and Machines, pp. TuA-II-2.1 - TuA-II-2.4 (2003)

    Google Scholar 

  8. Dittrich, E.: Modular Robot Unit – Characterisation, Design and Realisation, Report of Internship, BIRG, EPFL, Lausanne (2004)

    Google Scholar 

  9. Longo, D., Muscato, G.: Adhesion techniques for climbing robots: State of the art and ex-perimental considerations. In: Advances in Mobile Robotics, pp. 6–30. World Scientific Publishing Co. Pte. Ltd, Singapore (2008)

    Google Scholar 

  10. Balaguer, C., Giminez, A., Abderrahim, C.M.: ROMA robots for inspection of steel based infrastructures. Industrial Robot 29(3), 246–251 (2002)

    Article  Google Scholar 

  11. Mämpel, J., et al.: Inspirat – Towards a biologically inspired climbing robot for the inspection of linear structures. In: Advances in Mobile Robotics, pp. 206–213. World Scientific Publishing Co. Pte. Ltd, Singapore (2008)

    Google Scholar 

  12. Murata, S., Kurokawa, A., Kamimura, H., Yoshida, E., Tomita, K., Kokaji, S.: M-tran: Self-reconfigurable modular robotic system. IEEE Transactions on Mechatronics 7(4), 431–441 (2002)

    Article  Google Scholar 

  13. Suh, J.W., Homans, S.B., Yim, M.: Telecubes: Mechanical design of a module for self-reconfigurable robotics. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation Washington, DC, May 2002, pp. 4095–4101 (2002)

    Google Scholar 

  14. Andrada, E., Mämpel, J., Witte, H.: InspiRat: Climbing driven by the trunk, a biologically in-spired model based on rats’ and caterpillars’ locomotion. In: Proceedings of 53rd IWK, Technische Universität Ilmenau (2008)

    Google Scholar 

  15. Mämpel, J., Karguth, A., Gorb, S.N., Fischer, M.S., Witte, H.: InspiRat: A biologically in-spired small climbing robot for the inspection of linear structures in semi-structured technical environment. In: Proceedings of AMAM 2008 (2008)

    Google Scholar 

  16. Lehmann, L., Mämpel, J.: Design of an Adaptive Robot-Gripper. In: Proceedings of 53rd IWK, Technische Universität Ilmenau (2008)

    Google Scholar 

  17. Gladun, D., Gorb, S.: Insect walking techniques on thin stems. Arthropod-Plant Interactions 1(2), 77–91 (2007)

    Article  Google Scholar 

  18. Fischer, W., Tâche, F., Siegwart, R.: Inspection System for Very Thin and Fragile Surfaces, Based on a Pair of Wall Climbing Robots with Magnetic Wheels. In: Proceedings of IROS 2007 (2007)

    Google Scholar 

  19. Sproewitz, A., Asadpour, M., Bourquin, Y., Ijspeert, A.J.: An active connection mechanism for modular self-reconfigurable robotic systems based on physical latching. In: Proceedings of the 2008 IEEE International Conference on Robotics and Automation, ICRA 2008 (2008) (in press)

    Google Scholar 

  20. Kim, S., Spenko, M., Trujillo, S., Heynemann, B., Santos, D., Cutkosky, M.R.: Smooth Vertical Surface Climbing With Directional Adhesion. IEEE Transactions on robotics 24 (2008)

    Google Scholar 

  21. Asbeck, A.T., Kim, S., McClung, A., Parness, A., Cutkosky, M.R.: Climbing Walls with Microspines. In: IEEE ICRA (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer London

About this paper

Cite this paper

Mämpel, J., Eisold, R., Kempf, W., Schilling, C., Witte, H. (2009). A Modular Concept for a Biologically Inspired Robot. In: Kozłowski, K.R. (eds) Robot Motion and Control 2009. Lecture Notes in Control and Information Sciences, vol 396. Springer, London. https://doi.org/10.1007/978-1-84882-985-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-985-5_36

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-984-8

  • Online ISBN: 978-1-84882-985-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics