Skip to main content

Pharmacogenomics

  • Chapter
  • First Online:
Clinical Approach to Sudden Cardiac Death Syndromes

Abstract

Numerous clinical trials have led to significant advancement in the pharmacological treatment of cardiovascular diseases in the past decades, which have greatly reduced the risk of mortality and morbidity in patients with cardiovascular diseases.1-19 Nonetheless, it is currently impossible for clinicians to precisely identify patients most likely to benefit or experience adverse drug reactions (ADRs) from these drugs. Hence, in clinical practice, the initiation of a pharmacological treatment is primarily based on the efficacy and safety of the drug in a given population and only to a limited extent based on an individual’s potential risks and benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yusuf S, Sleight P, Pogue J, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med. 2000;342(3): 145-153

    Article  CAS  PubMed  Google Scholar 

  2. Anon. Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators. Lancet. 1993;342(8875):821-828

    Google Scholar 

  3. Pfeffer MA, Braunwald E, Moye LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med. 1992;327(10):669-677

    Article  CAS  PubMed  Google Scholar 

  4. The SOLVD Investigators. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med. 1992;327(10):685-691

    Article  Google Scholar 

  5. The SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med. 1991;325(5): 293-302

    Article  Google Scholar 

  6. Effect of metoprolol CR/XL in chronic heart failure. Metoprolol CR/XL randomised intervention trial in congestive heart failure (MERIT-HF). Lancet. 1999;353(9169): 2001-2007

    Article  Google Scholar 

  7. Packer M, Coats AJ, Fowler MB, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med. 2001; 344(22):1651-1658

    Article  CAS  PubMed  Google Scholar 

  8. Dargie HJ. Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: the CAPRICORN randomised trial. Lancet. 2001;357(9266): 1385-1390

    Article  CAS  PubMed  Google Scholar 

  9. Packer M, Bristow MR, Cohn JN, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N Engl J Med. 1996;334(21):1349-1355

    Article  CAS  PubMed  Google Scholar 

  10. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20, 536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360(9326):7-22

    Article  Google Scholar 

  11. Anon. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet. 1994;344(8934): 1383-1389

    Google Scholar 

  12. Cannon CP, Braunwald E, McCabe CH, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350(15):1495-1504

    Article  CAS  PubMed  Google Scholar 

  13. The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med. 1998;339(19):1349-1357

    Article  Google Scholar 

  14. Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med. 1996;335(14):1001-1009

    Article  CAS  PubMed  Google Scholar 

  15. Theroux P, Ouimet H, McCans J, et al. Aspirin, heparin, or both to treat acute unstable angina. N Engl J Med. 1988; 319(17):1105-1111

    Article  CAS  PubMed  Google Scholar 

  16. Anon. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet. 1988;2(8607):349-360

    Google Scholar 

  17. Yusuf S, Zhao F, Mehta SR, et al. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med. 2001;345(7): 494-502

    Article  CAS  PubMed  Google Scholar 

  18. Chen ZM, Jiang LX, Chen YP, et al. Addition of clopidogrel to aspirin in 45, 852 patients with acute myocardial infarction: randomised placebo-controlled trial. Lancet. 2005; 366(9497):1607-1621

    Article  CAS  PubMed  Google Scholar 

  19. CAPRIE Steering Committee. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). Lancet. 1996;348(9038):1329-1339

    Article  Google Scholar 

  20. Materson BJ, Reda DJ. Correction: single-drug therapy for hypertension in men. N Engl J Med. 1994;330(23):1689

    Article  CAS  PubMed  Google Scholar 

  21. Materson BJ, Reda DJ, Cushman WC, et al. Single-drug therapy for hypertension in men. A comparison of six antihypertensive agents with placebo. The Department of Veterans Affairs Cooperative Study Group on Antihypertensive Agents. N Engl J Med. 1993;328(13):914-921

    Article  CAS  PubMed  Google Scholar 

  22. Pazzucconi F, Dorigotti F, Gianfranceschi G, et al. Therapy with HMG CoA reductase inhibitors: characteristics of the long-term permanence of hypocholesterolemic activity. Atherosclerosis. 1995;117(2):189-198

    Article  CAS  PubMed  Google Scholar 

  23. Schwartz GL, Turner ST. Pharmacogenetics of antihypertensive drug responses. Am J Pharmacogenomics. 2004;4(3):151-160

    Article  CAS  PubMed  Google Scholar 

  24. Wadelius M, Pirmohamed M. Pharmacogenetics of warfarin: current status and future challenges. Pharmacogenomics J. 2007;7(2):99-111

    Article  CAS  PubMed  Google Scholar 

  25. Chobanian AV, Bakris GL, Black HR, et al. The seventh report of the joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289(19):2560-2572

    Article  CAS  PubMed  Google Scholar 

  26. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of The National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA. 2001;285(19):2486-2497

    Article  Google Scholar 

  27. Adams KF, Lindenfeld J, Arnold JM, et al. HFSA 2006 comprehensive hear failure practice guidelines. J Card Fail. 2006;12:e1-e122

    Article  Google Scholar 

  28. Arnold JM, Liu P, Demers C, et al. Canadian Cardiovascular Society consensus conference recommendations on heart failure 2006: diagnosis and management. Can J Cardiol. 2006;22(1):23-45

    PubMed  Google Scholar 

  29. Hunt SA. ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure). J Am Coll Cardiol. 2005;46(6):e1-e82

    Article  Google Scholar 

  30. Gandhi TK, Weingart SN, Borus J, et al. Adverse drug events in ambulatory care. N Engl J Med.. 2003;348(16): 1556-1564

    Article  PubMed  Google Scholar 

  31. Classen DC, Pestotnik SL, Evans RS, et al. Adverse drug events in hospitalized patients. Excess length of stay, extra costs, and attributable mortality. JAMA. 1997;277(4):301-306

    Article  CAS  PubMed  Google Scholar 

  32. Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA. 1998;279(15):1200-1205

    Article  CAS  PubMed  Google Scholar 

  33. Budnitz DS, Shehab N, Kegler SR, et al. Medication use leading to emergency department visits for adverse drug events in older adults. Ann Intern Med. 2007;147(11):755-765

    PubMed  Google Scholar 

  34. Johnson JA, Bootman JL. Drug-related morbidity and mortality. A cost-of-illness model. Arch Intern Med. 1995; 155(18):1949-1956

    Article  CAS  PubMed  Google Scholar 

  35. White TJ, Arakelian A, Rho JP. Counting the costs of drug-related adverse events. Pharmacoeconomics. 1999;15(5): 445-458

    Article  CAS  PubMed  Google Scholar 

  36. Pasternak RC, Smith SC Jr, Bairey-Merz CN, et al. ACC/AHA/NHLBI clinical advisory on the use and safety of statins. J Am Coll Cardiol. 2002;40(3):567-572

    Article  PubMed  Google Scholar 

  37. Dykewicz MS. Cough and angioedema from angiotensin-converting enzyme inhibitors: new insights into mechanisms and management. Curr Opin Allergy Clin Immunol. 2004;4(4):267-270

    Article  CAS  PubMed  Google Scholar 

  38. Alderman CP. Adverse effects of the angiotensin-converting enzyme inhibitors. Ann Pharmacother. 1996;30(1):55-61

    CAS  PubMed  Google Scholar 

  39. Evans WE, McLeod HL. Pharmacogenomics-drug disposition, drug targets, and side effects. N Engl J Med. 2003;348(6): 538-549

    Article  CAS  PubMed  Google Scholar 

  40. Weinshilboum R. Inheritance and drug response. N Engl J Med. 2003;348(6):529-537

    Article  PubMed  Google Scholar 

  41. Timbrell JA, Harland SJ, Facchini V. Polymorphic acetylation of hydralazine. Clin Pharmacol Ther. 1980;28(3): 350-355

    Article  CAS  PubMed  Google Scholar 

  42. Okumura K, Kita T, Chikazawa S, et al. Genotyping of N-acetylation polymorphism and correlation with procainamide metabolism. Clin Pharmacol Ther. 1997;61(5): 509-517

    Article  CAS  PubMed  Google Scholar 

  43. Mallet L, Spinewine A, Huang A. The challenge of managing drug interactions in elderly people. Lancet. 2007;370(9582): 185-191

    Article  CAS  PubMed  Google Scholar 

  44. Buxton IL. Pharmacokinetics and pharmacodynamics: the dynamics of drug absorption, distribution, action, and elimination. In: Brunton LL, Lazo JS, Packer DL, eds. Goodman and Gilman’s the pharmacological basis of therapeutics. 11th ed. New York: McGraw-Hill; 2006:1-40

    Google Scholar 

  45. Ho RH, Kim RB. Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther. 2005;78(3):260-277

    Article  CAS  PubMed  Google Scholar 

  46. Christians U, Strom T, Zhang YL, et al. Active drug transport of immunosuppressants: new insights for pharmacokinetics and pharmacodynamics. Ther Drug Monit. 2006;28(1): 39-44

    Article  CAS  PubMed  Google Scholar 

  47. Wilkinson GR. Drug metabolism and variability among patients in drug response. N Engl J Med. 2005;352(21): 2211-2221

    Article  CAS  PubMed  Google Scholar 

  48. Gonzalez FJ. Tukey RH. In: Brunton LL, Lazo JS, Packer DL, eds. Goodman and Gilman’s the pharmacological basis of therapeutics. New York: McGraw-Hill; 2006: 71-92

    Google Scholar 

  49. Haehner BD, Gorski JC, Vandenbranden M, et al. Bimodal distribution of renal cytochrome P450 3A activity in humans. Mol Pharmacol. 1996;50(1):52-59

    CAS  PubMed  Google Scholar 

  50. Joy MS, Hogan SL, Thompson BD, et al. Cytochrome P450 3A5 expression in the kidneys of patients with calcineurin inhibitor nephrotoxicity. Nephrol Dial Transplant. 2007;22(7):1963-1968

    Article  CAS  PubMed  Google Scholar 

  51. Phillips KA, Veenstra DL, Oren E, et al. Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review. JAMA. 2001;286(18):2270-2279

    Article  CAS  PubMed  Google Scholar 

  52. Higashi MK, Veenstra DL, Kondo LM, et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA. 2002; 287(13):1690-1698

    Article  CAS  PubMed  Google Scholar 

  53. Lima MV, Ribeiro GS, Mesquita ET, et al. CYP2C9 genotypes and the quality of anticoagulation control with warfarin therapy among Brazilian patients. Eur J Clin Pharmacol. 2008;64(1):9-15

    Article  CAS  PubMed  Google Scholar 

  54. Limdi NA, McGwin G, Goldstein JA, et al. Influence of CYP2C9 and VKORC1 1173C/T genotype on the risk of hemorrhagic complications in African-American and European-American patients on warfarin. Clin Pharmacol Ther. 2008;83(2): 312-321

    Article  CAS  PubMed  Google Scholar 

  55. Sanderson S, Emery J, Higgins J. CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGEnet systematic review and meta-analysis. Genet Med. 2005;7(2):97-104

    Article  CAS  PubMed  Google Scholar 

  56. Somogyi AA, Barratt DT, Coller JK. Pharmacogenetics of opioids. Clin Pharmacol Ther. 2007;81(3):429-444

    Article  CAS  PubMed  Google Scholar 

  57. Takekuma Y, Takenaka T, Kiyokawa M, et al. Evaluation of effects of polymorphism for metabolic enzymes on pharmacokinetics of carvedilol by population pharmacokinetic analysis. Biol Pharm Bull. 2007;30(3):537-542

    Article  CAS  PubMed  Google Scholar 

  58. Honda M, Ogura Y, Toyoda W, et al. Multiple regression analysis of pharmacogenetic variability of carvedilol disposition in 54 healthy Japanese volunteers. Biol Pharm Bull. 2006;29(4):772-778

    Article  CAS  PubMed  Google Scholar 

  59. Fux R, Morike K, Prohmer AM, et al. Impact of CYP2D6 genotype on adverse effects during treatment with metoprolol: a prospective clinical study. Clin Pharmacol Ther. 2005;78(4):378-387

    Article  CAS  PubMed  Google Scholar 

  60. Terra SG, Pauly DF, Lee CR, et al. beta-Adrenergic receptor polymorphisms and responses during titration of metoprolol controlled release/extended release in heart failure. Clin Pharmacol Ther. 2005;77(3):127-137

    Article  CAS  PubMed  Google Scholar 

  61. Zineh I, Beitelshees AL, Gaedigk A, et al. Pharmacokinetics and CYP2D6 genotypes do not predict metoprolol adverse events or efficacy in hypertension. Clin Pharmacol Ther. 2004;76(6):536-544

    Article  CAS  PubMed  Google Scholar 

  62. Ismail R, Teh LK. The relevance of CYP2D6 genetic polymorphism on chronic metoprolol therapy in cardiovascular patients. J Clin Pharm Ther. 2006;31(1):99-109

    Article  CAS  PubMed  Google Scholar 

  63. Wuttke H, Rau T, Heide R, et al. Increased frequency of cytochrome P450 2D6 poor metabolizers among patients with metoprolol-associated adverse effects. Clin Pharmacol Ther. 2002;72(4):429-437

    Article  CAS  PubMed  Google Scholar 

  64. Hallberg P, Karlsson J, Kurland L, et al. The CYP2C9 genotype predicts the blood pressure response to irbesartan: results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation vs Atenolol (SILVHIA) trial. J Hypertens. 2002;20(10):2089-2093

    Article  CAS  PubMed  Google Scholar 

  65. Yasar U, Forslund-Bergengren C, Tybring G, et al. Pharmacokinetics of losartan and its metabolite E-3174 in relation to the CYP2C9 genotype. Clin Pharmacol Ther. 2002;71(1):89-98

    Article  CAS  PubMed  Google Scholar 

  66. Sekino K, Kubota T, Okada Y, et al. Effect of the single CYP2C9*3 allele on pharmacokinetics and pharmacodynamics of losartan in healthy Japanese subjects. Eur J Clin Pharmacol. 2003;59(8-9):589-592

    Article  CAS  PubMed  Google Scholar 

  67. Babaoglu MO, Yasar U, Sandberg M, et al. CYP2C9 genetic variants and losartan oxidation in a Turkish population. Eur J Clin Pharmacol. 2004;60(5):337-342

    Article  CAS  PubMed  Google Scholar 

  68. Daly AK, King BP. Pharmacogenetics of oral anticoagulants. Pharmacogenetics. 2003;13(5):247-252

    Article  CAS  PubMed  Google Scholar 

  69. Loebstein R, Vecsler M, Kurnik D, et al. Common genetic variants of microsomal epoxide hydrolase affect warfarin dose requirements beyond the effect of cytochrome P450 2C9. Clin Pharmacol Ther. 2005;77(5):365-372

    Article  CAS  PubMed  Google Scholar 

  70. Takahashi H, Wilkinson GR, Nutescu EA, et al. Different contributions of polymorphisms in VKORC1 and CYP2C9 to intra- and inter-population differences in maintenance dose of warfarin in Japanese, Caucasians and African-Americans. Pharmacogenet Genomics. 2006;16(2):101-110

    Article  CAS  PubMed  Google Scholar 

  71. Gage BF, Eby C, Milligan PE, et al. Use of pharmacogenetics and clinical factors to predict the maintenance dose of warfarin. Thromb Haemost. 2004;91(1):87-94

    CAS  PubMed  Google Scholar 

  72. King BP, Khan TI, Aithal GP, et al. Upstream and coding region CYP2C9 polymorphisms: correlation with warfarin dose and metabolism. Pharmacogenetics. 2004;14(12): 813-822

    Article  CAS  PubMed  Google Scholar 

  73. Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science. 1999;286(5439):487-491

    Article  CAS  PubMed  Google Scholar 

  74. Goto M, Masuda S, Kiuchi T, et al. CYP3A5*1-carrying graft liver reduces the concentration/oral dose ratio of tacrolimus in recipients of living-donor liver transplantation. Pharmacogenetics. 2004;14(7):471-478

    Article  CAS  PubMed  Google Scholar 

  75. Lin YS, Dowling AL, Quigley SD, et al. Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharmacol. 2002; 62(1):162-172

    Article  CAS  PubMed  Google Scholar 

  76. Uesugi M, Masuda S, Katsura T, et al. Effect of intestinal CYP3A5 on postoperative tacrolimus trough levels in living-donor liver transplant recipients. Pharmacogenet Genomics. 2006;16(2):119-127

    Article  CAS  PubMed  Google Scholar 

  77. Dai Y, Iwanaga K, Lin YS, et al. In vitro metabolism of cyclosporine A by human kidney CYP3A5. Biochem Pharmacol. 2004;68(9):1889-1902

    Article  CAS  PubMed  Google Scholar 

  78. Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001;27(4): 383-391

    Article  CAS  PubMed  Google Scholar 

  79. Wilke RA, Moore JH, Burmester JK. Relative impact of CYP3A genotype and concomitant medication on the severity of atorvastatin-induced muscle damage. Pharmacogenet Genomics. 2005;15(6):415-421

    Article  CAS  PubMed  Google Scholar 

  80. Armitage J. The safety of statins in clinical practice. Lancet. 2007;370(9601):1781-1790

    Article  CAS  PubMed  Google Scholar 

  81. Chen ZM, Pan HC, Chen YP, et al. Early intravenous then oral metoprolol in 45, 852 patients with acute myocardial infarction: randomised placebo-controlled trial. Lancet. 2005;366(9497):1622-1632

    Article  CAS  PubMed  Google Scholar 

  82. Frere C, Cuisset T, Morange PE, et al. Effect of Cytochrome P450 Polymorphisms on Platelet Reactivity After Treatment With Clopidogrel in Acute Coronary Syndrome. Am J Cardiol. 2008;101(8):1088-1093

    Article  CAS  PubMed  Google Scholar 

  83. Chen BL, Zhang W, Li Q, et al. Inhibition of Adp-induced platelet aggregation by clopidogrel is related to Cyp2c19 genetic polymorphisms. Clin Exp Pharmacol Physiol. 2008;35(8):904-908

    Article  CAS  PubMed  Google Scholar 

  84. Giusti B, Gori AM, Marcucci R, et al. Cytochrome P450 2C19 loss-of-function polymorphism, but not CYP3A4 IVS10 + 12G/A and P2Y12 T744C polymorphisms, is associated with response variability to dual antiplatelet treatment in high-risk vascular patients. Pharmacogenet Genomics. 2007;17(12):1057-1064

    Article  CAS  PubMed  Google Scholar 

  85. Wilkinson GR. Pharmacokinetics and pharmacodynamics: the dynamics of drug absorption, distribution, action and elimination. In: Brunton LL, Lazo JS, Parker KL, eds. Goodman and Gilman’s the pharmacological basis of therapeutics. 11th ed. New York: Mcgraw-Hill; 2006:1-40

    Google Scholar 

  86. Andersson T, Flockhart DA, Goldstein DB, et al. Drug-metabolizing enzymes: evidence for clinical utility of pharmacogenomic tests. Clin Pharmacol Ther. 2005;78(6): 559-581

    Article  CAS  PubMed  Google Scholar 

  87. Giacomini KM, Sugiyama Y. Membrane transporters and drug response. In: Brunton LL, Lazo JS, Packer DL, eds. Goodman and Gilman’s the pharmacological basis of therapeutics. New York: McGraw-Hill; 2006:41-70

    Google Scholar 

  88. Beringer PM, Slaughter RL. Transporters and their impact on drug disposition. Ann Pharmacother. 2005;39(6): 1097-1108

    Article  CAS  PubMed  Google Scholar 

  89. Eichelbaum M, Fromm MF, Schwab M. Clinical aspects of the MDR1 (ABCB1) gene polymorphism. Ther Drug Monit. 2004;26(2):180-185

    Article  CAS  PubMed  Google Scholar 

  90. Koziolek MJ, Riess R, Geiger H, et al. Expression of multidrug resistance P-glycoprotein in kidney allografts from cyclosporine A-treated patients. Kidney Int. 2001;60(1): 156-166

    Article  CAS  PubMed  Google Scholar 

  91. Meissner K, Sperker B, Karsten C, et al. Expression and localization of P-glycoprotein in human heart: effects of cardiomyopathy. J Histochem Cytochem. 2002;50(10): 1351-1356

    CAS  PubMed  Google Scholar 

  92. Schwab M, Eichelbaum M, Fromm MF. Genetic polymorphisms of the human MDR1 drug transporter. Annu Rev Pharmacol Toxicol. 2003;43:285-307

    Article  CAS  PubMed  Google Scholar 

  93. Chowbay B, Li H, David M, et al. Meta-analysis of the influence of MDR1 C3435T polymorphism on digoxin pharmacokinetics and MDR1 gene expression. Br J Clin Pharmacol. 2005;60(2):159-171

    Article  CAS  PubMed  Google Scholar 

  94. Link E, Parish S, Armitage J, et al. SLCO1B1 variants and statin-induced myopathy-a genomewide study. N Engl J Med. 2008;359(8):789-799

    Article  CAS  PubMed  Google Scholar 

  95. Vinck WJ, Fagard RH, Vlietinck R, et al. Heritability of plasma renin activity and plasma concentration of angiotensinogen and angiotensin-converting enzyme. J Hum Hypertens. 2002;16(6):417-422

    Article  CAS  PubMed  Google Scholar 

  96. Newton-Cheh C, Guo CY, Gona P, et al. Clinical and genetic correlates of aldosterone-to-renin ratio and relations to blood pressure in a community sample. Hypertension. 2007;49(4): 846-856

    Article  CAS  PubMed  Google Scholar 

  97. Rice GI, Jones AL, Grant PJ, et al. Circulating activities of angiotensin-converting enzyme, its homolog, angiotensin-converting enzyme 2, and neprilysin in a family study. Hypertension. 2006;48(5):914-920

    Article  CAS  PubMed  Google Scholar 

  98. Rigat B, Hubert C, Alhenc-Gelas F, et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990;86(4):1343-1346

    Article  CAS  PubMed  Google Scholar 

  99. Moore N, Dicker P, O’Brien JK, et al. Renin gene polymorphisms and haplotypes, blood pressure, and responses to renin-angiotensin system inhibition. Hypertension. 2007; 50(2):340-347

    Article  CAS  PubMed  Google Scholar 

  100. Bhatnagar V, O’Connor DT, Schork NJ, et al. Angiotensin-converting enzyme gene polymorphism predicts the time-course of blood pressure response to angiotensin converting enzyme inhibition in the AASK trial. J Hypertens. 2007; 25(10):2082-2092

    Article  CAS  PubMed  Google Scholar 

  101. Kurland L, Liljedahl U, Karlsson J, et al. Angiotensinogen gene polymorphisms: relationship to blood pressure response to antihypertensive treatment. Results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation vs Atenolol (SILVHIA) trial. Am J Hypertens. 2004;17(1):8-13

    Article  CAS  PubMed  Google Scholar 

  102. Kurland L, Melhus H, Karlsson J, et al. Polymorphisms in the angiotensinogen and angiotensin II type 1 receptor gene are related to change in left ventricular mass during antihypertensive treatment: results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation versus Atenolol (SILVHIA) trial. J Hypertens. 2002;20(4):657-663

    Article  CAS  PubMed  Google Scholar 

  103. Kurland L, Melhus H, Karlsson J, et al. Aldosterone synthase (CYP11B2) -344 C/T polymorphism is related to antihypertensive response: result from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation versus Atenolol (SILVHIA) trial. Am J Hypertens. 2002;15(5):389-393

    Article  CAS  PubMed  Google Scholar 

  104. Kurland L, Melhus H, Karlsson J, et al. Angiotensin converting enzyme gene polymorphism predicts blood pressure response to angiotensin II receptor type 1 antagonist treatment in hypertensive patients. J Hypertens. 2001;19(10): 1783-1787

    Article  CAS  PubMed  Google Scholar 

  105. Cicoira M, Rossi A, Bonapace S, et al. Effects of ACE gene insertion/deletion polymorphism on response to spironolactone in patients with chronic heart failure. Am J Med. 2004;116(10):657-661

    Article  CAS  PubMed  Google Scholar 

  106. McNamara DM, Holubkov R, Postava L, et al. Pharmacogenetic interactions between angiotensin-converting enzyme inhibitor therapy and the angiotensin-converting enzyme deletion polymorphism in patients with congestive heart failure. J Am Coll Cardiol. 2004;44(10): 2019-2026

    Article  CAS  PubMed  Google Scholar 

  107. Arnett DK, Davis BR, Ford CE, et al. Pharmacogenetic association of the angiotensin-converting enzyme insertion/deletion polymorphism on blood pressure and cardiovascular risk in relation to antihypertensive treatment: the Genetics of Hypertension-Associated Treatment (GenHAT) study. Circulation. 2005;111(25):3374-3383

    Article  CAS  PubMed  Google Scholar 

  108. Sofowora GG, Dishy V, Muszkat M, et al. A common beta1-adrenergic receptor polymorphism (Arg389Gly) affects blood pressure response to beta-blockade. Clin Pharmacol Ther. 2003;73(4):366-371

    Article  CAS  PubMed  Google Scholar 

  109. Liu J, Liu ZQ, Yu BN, et al. beta1-Adrenergic receptor polymorphisms influence the response to metoprolol monotherapy in patients with essential hypertension. Clin Pharmacol Ther. 2006;80(1):23-32

    Article  CAS  PubMed  Google Scholar 

  110. Liu J, Liu ZQ, Tan ZR, et al. Gly389Arg polymorphism of beta1-adrenergic receptor is associated with the cardiovascular response to metoprolol. Clin Pharmacol Ther. 2003;74(4):372-379

    Article  CAS  PubMed  Google Scholar 

  111. Lobmeyer MT, Gong Y, Terra SG, et al. Synergistic polymorphisms of beta1 and alpha2C-adrenergic receptors and the influence on left ventricular ejection fraction response to beta-blocker therapy in heart failure. Pharmacogenet Genomics. 2007;17(4):277-282

    Article  CAS  PubMed  Google Scholar 

  112. Terra SG, Hamilton KK, Pauly DF, et al. Beta1-adrenergic receptor polymorphisms and left ventricular remodeling changes in response to beta-blocker therapy. Pharmacogenet Genomics. 2005;15(4):227-234

    Article  CAS  PubMed  Google Scholar 

  113. Johnson JA, Zineh I, Puckett BJ, et al. Beta 1-adrenergic receptor polymorphisms and antihypertensive response to metoprolol. Clin Pharmacol Ther. 2003;74(1):44-52

    Article  CAS  PubMed  Google Scholar 

  114. Mialet Perez J, Rathz DA, Petrashevskaya NN, et al. Beta 1-adrenergic receptor polymorphisms confer differential function and predisposition to heart failure. Nat Med. 2003;9(10):1300-1305

    Article  PubMed  CAS  Google Scholar 

  115. Kaye DM, Smirk B, Williams CJ, et al. Beta-adrenoceptor genotype influences the response to carvedilol in patients with congestive heart failure. Pharmacogenetics. 2003; 13(7):379-382

    Article  CAS  PubMed  Google Scholar 

  116. Mason DA, Moore JD, Green SA, et al. A gain-of-function polymorphism in a G-protein coupling domain of the human beta1-adrenergic receptor. J Biol Chem. 1999; 274(18):12670-12674

    Article  CAS  PubMed  Google Scholar 

  117. Liggett SB, Mialet-Perez J, Thaneemit-Chen S, et al. A polymorphism within a conserved beta(1)-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proc Natl Acad Sci USA. 2006;103(30):11288-11293

    Article  CAS  PubMed  Google Scholar 

  118. White HL, de Boer RA, Maqbool A, et al. An evaluation of the beta-1 adrenergic receptor Arg389Gly polymorphism in individuals with heart failure: a MERIT-HF sub-study. Eur J Heart Fail. 2003;5(4):463-468

    Article  CAS  PubMed  Google Scholar 

  119. Sconce EA, Khan TI, Wynne HA, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood. 2005;106(7):2329-2333

    Article  CAS  PubMed  Google Scholar 

  120. Rieder MJ, Reiner AP, Gage BF, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med. 2005;352(22):2285-2293

    Article  CAS  PubMed  Google Scholar 

  121. Anderson JL, Horne BD, Stevens SM, et al. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation. 2007;116(22):2563-2570

    Article  CAS  PubMed  Google Scholar 

  122. Shurin SB, Nabel EG. Pharmacogenomics-ready for prime time? N Engl J Med. 2008;358(10):1061-1063

    Article  CAS  PubMed  Google Scholar 

  123. Franco V, Polanczyk CA, Clausell N, et al. Role of dietary vitamin K intake in chronic oral anticoagulation: prospective evidence from observational and randomized protocols. Am J Med. 2004;116(10):651-656

    Article  CAS  PubMed  Google Scholar 

  124. Schwarz UI, Ritchie MD, Bradford Y, et al. Genetic determinants of response to warfarin during initial anticoagulation. N Engl J Med. 2008;358(10):999-1008

    Article  CAS  PubMed  Google Scholar 

  125. Veenstra DL, Blough DK, Higashi MK, et al. CYP2C9 haplotype structure in European American warfarin patients and association with clinical outcomes. Clin Pharmacol Ther. 2005;77(5):353-364

    Article  CAS  PubMed  Google Scholar 

  126. Fuster V, Ryden LE, Cannom DS, et al. ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation-executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation). J Am Coll Cardiol. 2006;48(4):854-906

    Article  PubMed  Google Scholar 

  127. Bennet AM, Di Angelantonio E, Ye Z, et al. Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA. 2007;298(11):1300-1311

    Article  CAS  PubMed  Google Scholar 

  128. Mangravite LM, Thorn CF, Krauss RM. Clinical implications of pharmacogenomics of statin treatment. Pharmacogenomics J. 2006;6(6):360-374

    Article  CAS  PubMed  Google Scholar 

  129. Chiodini BD, Franzosi MG, Barlera S, et al. Apolipoprotein E polymorphisms influence effect of pravastatin on survival after myocardial infarction in a Mediterranean population: the GISSI-Prevenzione study. Eur Heart J. 2007;28(16): 1977-1983

    Article  CAS  PubMed  Google Scholar 

  130. Gerdes LU, Gerdes C, Kervinen K, et al. The apolipoprotein epsilon4 allele determines prognosis and the effect on prognosis of simvastatin in survivors of myocardial infarction: a substudy of the Scandinavian simvastatin survival study. Circulation. 2000;101(12):1366-1371

    CAS  PubMed  Google Scholar 

  131. Shiffman D, Chasman DI, Zee RY, et al. A kinesin family member 6 variant is associated with coronary heart disease in the Women’s Health Study. J Am Coll Cardiol. 2008; 51(4):444-448

    Article  CAS  PubMed  Google Scholar 

  132. Shiffman D, O’Meara ES, Bare LA, et al. Association of gene variants with incident myocardial infarction in the Cardiovascular Health Study. Arterioscler Thromb Vasc Biol. 2008;28(1):173-179

    Article  CAS  PubMed  Google Scholar 

  133. Iakoubova OA, Tong CH, Rowland CM, et al. Association of the Trp719Arg polymorphism in kinesin-like protein 6 with myocardial infarction and coronary heart disease in 2 prospective trials: the CARE and WOSCOPS trials. J Am Coll Cardiol. 2008;51(4):435-443

    Article  CAS  PubMed  Google Scholar 

  134. Iakoubova OA, Sabatine MS, Rowland CM, et al. Polymorphism in KIF6 gene and benefit from statins after acute coronary syndromes: results from the PROVE IT-TIMI 22 study. J Am Coll Cardiol. 2008;51(4):449-455

    Article  CAS  PubMed  Google Scholar 

  135. Stolarz K, Staessen JA, Kawecka-Jaszcz K, et al. Genetic variation in CYP11B2 and AT1R influences heart rate variability conditional on sodium excretion. Hypertension. 2004;44(2):156-162

    Article  CAS  PubMed  Google Scholar 

  136. Julius S, Nesbitt SD, Egan BM, et al. Feasibility of treating prehypertension with an angiotensin-receptor blocker. N Engl J Med. 2006;354(16):1685-1697

    Article  CAS  PubMed  Google Scholar 

  137. McClellan KJ, Goa KL. Candesartan cilexetil. A review of its use in essential hypertension. Drugs. 1998;56(5): 847-869

    Article  CAS  PubMed  Google Scholar 

  138. Granger CB, McMurray JJ, Yusuf S, et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: the CHARM-Alternative trial. Lancet. 2003;362(9386):772-776

    Article  CAS  PubMed  Google Scholar 

  139. Danser AH, van Kesteren CA, Bax WA, et al. Prorenin, renin, angiotensinogen, and angiotensin-converting enzyme in normal and failing human hearts. Evidence for renin binding. Circulation. 1997;96(1):220-226

    CAS  PubMed  Google Scholar 

  140. Zisman LS, Asano K, Dutcher DL, et al. Differential regulation of cardiac angiotensin converting enzyme binding sites and AT1 receptor density in the failing human heart. Circulation. 1998;98(17):1735-1741

    CAS  PubMed  Google Scholar 

  141. Matsubara H. Renin-angiotensin system in human failing hearts: message from nonmyocyte cells to myocytes. Circ Res. 2001;88(9):861-863

    Article  CAS  PubMed  Google Scholar 

  142. Serneri GG, Boddi M, Cecioni I, et al. Cardiac angiotensin II formation in the clinical course of heart failure and its relationship with left ventricular function. Circ Res. 2001;88(9):961-968

    Article  CAS  PubMed  Google Scholar 

  143. Pieruzzi F, Abassi ZA, Keiser HR. Expression of renin-angiotensin system components in the heart, kidneys, and lungs of rats with experimental heart failure. Circulation. 1995;92(10):3105-3112

    CAS  PubMed  Google Scholar 

  144. Yoshimura M, Nakamura S, Ito T, et al. Expression of aldosterone synthase gene in failing human heart: quantitative analysis using modified real-time polymerase chain reaction. J Clin Endocrinol Metab. 2002;87(8):3936-3940

    Article  CAS  PubMed  Google Scholar 

  145. de Denus S, Tardif JC, White M, et al. Quantification of the risk and predictors of hyperkalemia in patients with left ventricular dysfunction: a retrospective analysis of the Studies of Left Ventricular Dysfunction (SOLVD) trials. Am Heart J. 2006;152(4):705-712

    Article  PubMed  CAS  Google Scholar 

  146. Hamelin BA, Bouayad A, Methot J, et al. Significant interaction between the nonprescription antihistamine diphenhydramine and the CYP2D6 substrate metoprolol in healthy men with high or low CYP2D6 activity. Clin Pharmacol Ther. 2000;67(5):466-477

    Article  CAS  PubMed  Google Scholar 

  147. Johnson SG, Rogers K, Delate T, et al. Outcomes associated with combined antiplatelet and anticoagulant therapy. Chest. 2008;133(4):948-954

    Article  CAS  PubMed  Google Scholar 

  148. Kroon LA. Drug interactions with smoking. Am J Health Syst Pharm. 2007;64(18):1917-1921

    Article  CAS  PubMed  Google Scholar 

  149. Millican EA, Lenzini PA, Milligan PE, et al. Genetic-based dosing in orthopedic patients beginning warfarin therapy. Blood. 2007;110(5):1511-1515

    Article  CAS  PubMed  Google Scholar 

  150. Dickinson BD, Havas S. Reducing the population burden of cardiovascular disease by reducing sodium intake: a report of the Council on Science and Public Health. Arch Intern Med. 2007;167(14):1460-1468

    Article  CAS  PubMed  Google Scholar 

  151. Kuznetsova T, Staessen JA, Thijs L, et al. Left ventricular mass in relation to genetic variation in angiotensin II receptors, renin system genes, and sodium excretion. Circulation. 2004;110(17):2644-2650

    Article  CAS  PubMed  Google Scholar 

  152. Wojciechowska W, Staessen JA, Stolarz K, et al. Association of peripheral and central arterial wave reflections with the CYP11B2-344C allele and sodium excretion. J Hypertens. 2004;22(12):2311-2319

    Article  CAS  PubMed  Google Scholar 

  153. Kuznetsova T, Staessen JA, Brand E, et al. Sodium excretion as a modulator of genetic associations with cardiovascular phenotypes in the European Project on Genes in Hypertension. J Hypertens. 2006;24(2):235-242

    Article  CAS  PubMed  Google Scholar 

  154. Salazar NC, Chen J, Rockman HA. Cardiac GPCRs: GPCR signaling in healthy and failing hearts. Biochim Biophys Acta. 2007;1768(4):1006-1018

    Article  CAS  PubMed  Google Scholar 

  155. Schmieder RE, Hilgers KF, Schlaich MP, et al. Renin-angiotensin system and cardiovascular risk. Lancet. 2007 ;369(9568):1208-1219

    Article  CAS  PubMed  Google Scholar 

  156. Kirchheiner J, Schmidt H, Tzvetkov MK, et al. Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication. Pharmacogenomics J. 2007;7(4):257-265

    Article  CAS  PubMed  Google Scholar 

  157. Takekuma Y, Takenaka T, Kiyokawa M, et al. Contribution of polymorphisms in UDP-glucuronosyltransferase and CYP2D6 to the individual variation in disposition of carvedilol. J Pharm Pharm Sci. 2006;9(1):101-112

    CAS  PubMed  Google Scholar 

  158. Geisler T, Schaeffeler E, Dippon J, et al. CYP2C19 and nongenetic factors predict poor responsiveness to clopidogrel loading dose after coronary stent implantation. Pharmacogenomics. 2008;9(9):1251-1259

    Article  CAS  PubMed  Google Scholar 

  159. Trenk D, Hochholzer W, Fromm MF, et al. Cytochrome P450 2C19 681G>A polymorphism and high on-clopidogrel platelet reactivity associated with adverse 1-year clinical outcome of elective percutaneous coronary intervention with drug-eluting or bare-metal stents. J Am Coll Cardiol. 2008;51(20):1925-1934

    Article  CAS  PubMed  Google Scholar 

  160. Hulot JS, Bura A, Villard E, et al. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood. 2006;108(7):2244-2247

    Article  CAS  PubMed  Google Scholar 

  161. Zheng H, Webber S, Zeevi A, et al. Tacrolimus dosing in pediatric heart transplant patients is related to CYP3A5 and MDR1 gene polymorphisms. Am J Transplant. 2003;3(4): 477-483

    Article  CAS  PubMed  Google Scholar 

  162. Zheng H, Zeevi A, Schuetz E, et al. Tacrolimus dosing in adult lung transplant patients is related to cytochrome P4503A5 gene polymorphism. J Clin Pharmacol. 2004;44(2): 135-140

    Article  CAS  PubMed  Google Scholar 

  163. Kim KA, Park PW, Lee OJ, et al. Effect of polymorphic CYP3A5 genotype on the single-dose simvastatin pharmacokinetics in healthy subjects. J Clin Pharmacol. 2007;47(1):87-93

    Article  CAS  PubMed  Google Scholar 

  164. Ladero JM. Influence of polymorphic N-acetyltransferases on non-malignant spontaneous disorders and on response to drugs. Curr Drug Metab. 2008;9(6):532-537

    Article  CAS  PubMed  Google Scholar 

  165. Pasanen MK, Neuvonen M, Neuvonen PJ, et al. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet Genomics. 2006;16(12):873-879

    Article  CAS  PubMed  Google Scholar 

  166. Ho RH, Choi L, Lee W, et al. Effect of drug transporter genotypes on pravastatin disposition in European- and African-American participants. Pharmacogenet Genomics. 2007;17(8):647-656

    Article  CAS  PubMed  Google Scholar 

  167. Aarnoudse AJ, Dieleman JP, Visser LE, et al. Common ATP-binding cassette B1 variants are associated with increased digoxin serum concentration. Pharmacogenet Genomics. 2008;18(4):299-305

    Article  CAS  PubMed  Google Scholar 

  168. Beta-Blocker Evaluation of Survival Trial Investigators. A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. N Engl J Med. 2001;344(22): 1659-1667

    Article  Google Scholar 

  169. Lanfear DE, Jones PG, Marsh S, et al. Beta2-adrenergic receptor genotype and survival among patients receiving beta-blocker therapy after an acute coronary syndrome. JAMA. 2005;294(12):1526-1533

    Article  CAS  PubMed  Google Scholar 

  170. Donnelly LA, Doney AS, Dannfald J, et al. A paucimorphic variant in the HMG-CoA reductase gene is associated with lipid-lowering response to statin treatment in diabetes: a GoDARTS study. Pharmacogenet Genomics. 2008;18(12): 1021-1026

    Article  CAS  PubMed  Google Scholar 

  171. Krauss RM, Mangravite LM, Smith JD, et al. Variation in the 3-hydroxyl-3-methylglutaryl coenzyme a reductase gene is associated with racial differences in low-density lipoprotein cholesterol response to simvastatin treatment. Circulation. 2008;117(12):1537-1544

    Article  CAS  PubMed  Google Scholar 

  172. Lynch AI, Boerwinkle E, Davis BR, et al. Pharmacogenetic association of the NPPA T2238C genetic variant with cardiovascular disease outcomes in patients with hypertension. JAMA. 2008;299(3):296-307

    Article  CAS  PubMed  Google Scholar 

  173. Cooper GM, Johnson JA, Langaee TY, et al. A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood. 2008;112(4): 1022-1027

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon de Denus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London

About this chapter

Cite this chapter

de Denus, S., Phillips, M., Tardif, JC. (2010). Pharmacogenomics. In: Brugada, R. (eds) Clinical Approach to Sudden Cardiac Death Syndromes. Springer, London. https://doi.org/10.1007/978-1-84882-927-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-927-5_21

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-926-8

  • Online ISBN: 978-1-84882-927-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics