Skip to main content

Chemical Vapour Infiltration

  • Chapter
Chemical Vapour Deposition

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

Chemical vapour infiltration (CVI) was initially proposed and developed by Bickerdike [1] in 1962 to increase the density of porous carbon. The earliest patent was to infiltrate the porous alumina preform with chromium carbide by Jenkins [2] in 1964. CVI was then described for the densification of C/C composites by Kotlensky in 1973 [3]. CVI techniques have been widely investigated since. In the early 1970s Professor Fitzer’s group [4] at Karlsruhe University started to investigate SiC CVI for fibre-reinforced composites. Meanwhile, Professor Naslain’s group [5] at Bordeaux University began the development of an isothermal isobaric CVI (I-CVI) technique to an fabricate carbon-fibre-reinforced silicon carbide composite aimed improving the oxidation resistance of C/C composites. In 1984 a forced CVI (F-CVI) technique was demonstrated by Professor Lackey’s group [6] at Oak Ridge National Laboratory, USA. The commercialisation of the I-CVI technique for ceramic-matrix composites was first carried out at Societe Europeenne de Propulsion (SEP), France and at Du Pont, USA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bickerdike RL, Brown ARG, Hughes G, Ranson H (1962) In: Mrosowski S, Studebaker MC, Walker PL (eds) Proceedings of 5th conference on carbon, vol 1. Pergamon, New York, p575

    Google Scholar 

  2. Jenkins WC (1964) Method of depositing metals and metallic compounds throughout the pores of a porous body. US Patent 3,160,517

    Google Scholar 

  3. Kotlensky WV (1973) Deposition of pyrolytic carbon in porous solid. In: Walker PL Jr, Thrower PA (eds) Chemistry and physics of carbon. Dekker, New York, vol 9, pp173–262:

    Google Scholar 

  4. Fitzer E, Hegen D, Strohmeier H (1979) Chemical vapor deposition of silicon carbide and silicon nitride and its application for preparation of improved silicon ceramics. In: Sedgwick TO, Lydtin H (eds) Proceedings of the 7th international conference on chemical vapour deposition. Electrochemical Society, Pennington, NJ, pp525–535

    Google Scholar 

  5. Christin F, Naslain R, Bernard C (1979) A thermodynamic and experimental approach of silicon carbide CVD. Application to the CVD-infiltration of porous carbon composites. In: Sedgwick TO, Lydtin H (eds) Proceedings of the 7th international conference on chemical vapour deposition. Electrochemical Society, Pennington, NJ, pp499–514

    Google Scholar 

  6. Caputo AJ, Lackey WJ (1984) Fabrication of fibre-reinforced ceramic composites by chemical vapor infiltration. Ceram Eng Sci Proc 5:654–667

    Article  Google Scholar 

  7. Fitzer E, Fritz W, Schoch G (1991) The chemical vapor impregnation of porous solids, modeling of the CVI-process. J de Physique IV 2:C-2-143–150

    Google Scholar 

  8. Naslain R (1992) CVI composites. In: Warren R (ed) Ceramic-matrix composites. Chapman & Hall, New York, pp199–244

    Google Scholar 

  9. Besmann TM, Sheldon BW, Lowden RA, Stinton DP (1991) Vapor-phase fabrication and properties of continuous-filament ceramic composites. Science 253:1104–1109

    Article  Google Scholar 

  10. Golecki I (1997) Rapid vapor-phase densification of refractory composites. Mater Sci Eng R20:37–124

    Article  Google Scholar 

  11. Christin F (2002) Design, fabrication and application of thermostructural composites (TSC) like C/C, C/SiC, and SiC/SiC composites. Adv Eng Mater 4:903–912

    Article  Google Scholar 

  12. Bird RB, Stewart WE, Lightfoot EN (1960) Transport Phenomena. Wiley, New York

    Google Scholar 

  13. Kalidindi SR, Desu SB (1990) Analytical model for the low pressure chemical vapor deposition of SiO2 from tetraethoxysilane. J Electrochem Soc137:624–628

    Article  Google Scholar 

  14. Starr TL (1992) Advance in modeling of the chemical vapor infiltration process. In: Besmann TM, Gallois BM, Warren JW (eds) Chemical vapor deposition of refractory metals and ceramics II. Materials Research Society, Pittsburgh, PA, pp207–214

    Google Scholar 

  15. Thomas JM, Thomas WJ (1997) Principles and practice of heterogeneous catalysis, VCH, Weinheim

    Google Scholar 

  16. Fedou R, Langlais F, Naslain R (1990) On the modeling of the chemical vapor infiltration of SiC-based ceramics in a straight cylindrical pore. In: Spear KE, Cullen GW (eds) Proceedings of the 11th international conference on chemical vapour deposition. Electrochemical Society, Pennington, NJ, pp513–524

    Google Scholar 

  17. Marinkovic S, Dimitrijevic S (1985) Carbon/carbon composites prepared by chemical vapour deposition. Carbon 23:691–699

    Article  Google Scholar 

  18. Clegg WJ, Kendall KMN, Alford N, Button TW, Brichall JD (1990) A simple way to make tough ceramics. Nature 347:455–457

    Article  Google Scholar 

  19. Evans AG (1990) Perspective on the development of high-toughness ceramics. J Am Ceram Soc 73:187–206

    Article  Google Scholar 

  20. Dugne RO, Guette A (1991) Boron nitride interphase in ceramic-matrix composites. J Am Ceram Soc 74:2482–2488

    Article  Google Scholar 

  21. Tressler RE (1999) Recent developments in fibres and interphases for high temperature ceramic matrix composites. Composites A30:429–437

    Article  Google Scholar 

  22. Brennan JJ (1990) Interfacial studies of chemical-vapour-infiltrated ceramic matrix composites. Mater Sci Eng A126: 203–223

    Google Scholar 

  23. Naslain R, Pailler R, Bourrat X, Bertrand S, Heurtevent F, Dupel P, Lamouroux F (2001) Synthesis of highly tailored ceramic matrix composites by pressure-pulsed CVI. Solid State Ion 141-142:541–548

    Article  Google Scholar 

  24. Xu YD, Cheng LF, Zhang LT, Yin HF, Yin XW (2001) Mechanical properties of 3D fibre reinforced C/SiC composites. Mater Sci Eng A300:196–202

    Article  Google Scholar 

  25. Lamouroux F, Bourrat X, Naslain R (1993) Structure/oxidation behavior relationship in the carbonaceous constituents of 2D-C/PyC/SiC composites. Carbon 31:1273–1288

    Article  Google Scholar 

  26. Lackey J, Hanigofsky JA, Freeman GB, Hardin RD, Prasad A (1995) Continuous fabrication of silicon carbide fibre tows by chemical vapor deposition. J Am Ceram Soc 78:1564–1570

    Article  Google Scholar 

  27. Ochiai S, Hojo M, Tanaka M (1999) Mechanical interactions between fibre and cracked coating layer and their influences on fibre strength. Composites A30:451–461

    Google Scholar 

  28. Naslain R, Lamon J, Pailler R, Bourrat X, Guette A and Langlais F (1999) Micro/minicomposites: a useful approach to the design and development of nonoxide CMCs. Composites A30:537–547

    Article  Google Scholar 

  29. Morgen P (2005) Carbon fibres and their composites. Taylor & Francis, London, p565

    Google Scholar 

  30. Bouquet C, Fischer R, Thebault J, Soyris P, Uhrig G (2005) Composite technologies development status for scramjet. In: Proceedings of AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies :AIAA-2005-3431, Capua, Italy

    Google Scholar 

  31. Ohnabe H, Masaki S, Onozuka M, Miyahara K, Sasa T (1999) Potential application of ceramic matrix composites to aero-engine components. Composites A30:429–437

    Article  Google Scholar 

  32. Naslain R, Christin F (2003) SiC-matrix composite materials for advanced jet engines. MRS Bull:28:9:654–658

    Google Scholar 

  33. Christin FA (2005) A global approach to fibre nD architectures and self-sealing matrices: from research to production. Int J Appl Ceram Technol 2:97–104

    Article  Google Scholar 

  34. Bouquet C, Fischer R, Larrieu JM, Uhrig G and Thebault J (2003) Composite technologies development status for scramjet applications. In: Proceedings of 12th AIAA International Space Planes and Hypersonics Systems and Technologies :AIAA-2003-6917, Norfolk, VA

    Google Scholar 

  35. Caputo AJ, Lackey WJ (1984) Fabrication of fibre reinforced ceramic composites by chemical vapour infiltration. Ceram Eng Sci Proc 5:654–667

    Article  Google Scholar 

  36. Stinton DP, Lowden RA, Besmann TM (1992) Fibre-reinforced tubular composites by chemical vapour infiltration. In: Besmann TM, Gallois BM, Warren JW (eds) Chemical vapour deposition of refractory metals and ceramics II. Materials Research Society, Pittsburgh, PA, pp233–238

    Google Scholar 

  37. Besmann TM, McLauglin JC, Lin HT (1995) Fabrication of ceramic composites: forced CVI. J Nucl Mater 219:31–35

    Article  Google Scholar 

  38. Vaidyaraman S, Lackey WJ, Freeman GB, Agrawal PK, Langman MD (1995) Fabrication of carbon-carbon composites by forced flow-thermal gradient chemical vapour infiltration. J Mater Res 10:1469–1477

    Article  Google Scholar 

  39. Tsai CY, Desu SB (1992) Contribution of gas-phase reactions to the deposition of SiC by a forced-flow chemical vapor infiltration process. In: Besmann TM, Gallois BM, Warren JW (eds) Chemical vapour deposition of refractory metals and ceramics II. Materials Research Society, Pittsburgh, PA, pp227–232

    Google Scholar 

  40. Snead LL, Jones RH, Kohyama A, Fenici P (1996) Statue of silicon carbide composites for fusion. J Nucl Mater 233-237:26–36

    Article  Google Scholar 

  41. Gupte SM, Tsamopoulos JA (1989) Densification of porous materials by chemical vapor infiltration. J Electrochem Soc 136:555–561

    Article  Google Scholar 

  42. Rovillain D, Trinquecoste M, Bruneton E, Derre A, David P, Delhaes P (2001) Film boiling chemical vapor infiltration: an experimental study on carbon/carbon composites materials. Carbon 39:1355–1365

    Article  Google Scholar 

  43. Buckley JD (1988) Carbon-carbon: a overview. Am Ceram Soc Bull 67:364–368

    Google Scholar 

  44. Stoller HM, Frye ER (1972) SAMPE. Q3:10–12

    Google Scholar 

  45. Lieberman ML, Curlee RM, Brannten FH, Noles GT (1975) CVD/PAN preform carbon/carbon composites. J Comp Mater 9:337–346

    Article  Google Scholar 

  46. Golecki I, Morris RC, Narasimhan D (1994) Method of rapid densifying a porous structure. US Patent 5,348,774

    Google Scholar 

  47. Golecki I (2003) Industrial carbon chemical vapor infiltration (CVI) processes. In: Delhaes P (ed) Fibre and composites. Taylor & Francis, London, pp112–138

    Chapter  Google Scholar 

  48. Zhao JG, Li KZ, Li HJ, Wang C (2006) The influence of thermal gradient on pyrocarbon deposition in carbon/carbon composites during the CVI process. Carbon 44:786–791

    Article  Google Scholar 

  49. Tang ZH, Qu DN, Xiong J, Zou ZQ (2003) Effect of infiltration conditions on the densification behavior of carbon/carbon composites prepared by a directional-flow thermal gradient CVI process. Carbon 41:2703–2710

    Article  Google Scholar 

  50. Tang SF, Deng JY, Wang SJ, Liu WC (2007) Fabrication and characterization of C/SiC composites with large thickness, high density and near-stoichiometric matrix by heaterless chemical vapor infiltration. Mater Sci Eng A465:290–294

    Article  Google Scholar 

  51. Tang SF, Deng JJ, Du HF, Liu WC, Yang K (2005) Fabrication and microstructure of C/SiC composites using a novel heaterless chemical vapor infiltration technique. J Am Ceram Soc 88:3253–3255

    Article  Google Scholar 

  52. Houdayer M, Spitz J, Tran-Van D (1984) Process for the densification of a porous structure. US Patent 4,472,454.

    Google Scholar 

  53. Bruneton E, Narcy B, Oberlin A (1997) Carbon-carbon composites prepared by a rapid densification process I: Synthesis and physico-chemical data. Carbon 35:1593–1598

    Article  Google Scholar 

  54. Vignoles GL, Goyheneche JM, Sebastian P, Puiggali JR, Lines JF, Lachaud J, Delhaes P, Trinquecoste M (2006) The film-boiling densification process for C/C composite fabrication: from local scale to overall optimization. Chem Eng Sci 61:5636–5653

    Article  Google Scholar 

  55. Bryant WA (1976) Producing extended area deposits of uniform thickness by a new chemical vapour deposition technique. J Cryst Growth 35:257–261

    Article  Google Scholar 

  56. Sugiyama K, Nakamura T (1987) Pulse CVI of porous carbon. J Mater Sci Lett 6:331–333

    Article  Google Scholar 

  57. Sugiyama K, Yamamoto E (1989) Reinforcement and antioxidizing of porous carbon by pulse CVI of SiC. J Mater Sci 24:3756–3762

    Article  Google Scholar 

  58. Dupel P, Bourrat X, Pailler R (1995) Stucture of pyrocarbon infiltration by pulse-CVI. Carbon 33:1193–1204

    Article  Google Scholar 

  59. Lamouroux F, Bertrand S, Pailler R, Naslain R, Cataldi M (1999) Oxidationresistant carbon-fibre-reinforced ceramic-matrix composites. Composites Sci Technol 59:1073–1085

    Article  Google Scholar 

  60. Reagan P (1993) Chemical vapor composites (CVC). J de Physique IV 2:C3-541–548

    Article  Google Scholar 

  61. Reagan P, Scoville AN, Leaf R (1992) Method of forming composite articles from CVD gas streams and solid particles of fibre. US Patent 5,154,862

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2010). Chemical Vapour Infiltration. In: Chemical Vapour Deposition. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-84882-894-0_5

Download citation

Publish with us

Policies and ethics