Skip to main content

Thermodynamics and Kinetics of Chemical Vapour Deposition

  • Chapter
Book cover Chemical Vapour Deposition

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

Thermodynamic studies of a CVD process are undertaken to provide a basic understanding of chemical reactions under equilibrium conditions. To ensure a high quality of a CVD coating it is essential to determine the feasibility of a particular CVD reaction first, then select the suitable precursors for the CVD processes. CVD phase diagrams are derived based on the minimisation of Gibbs free energy and are useful in predicting the equilibrium phases present in the chemical reaction system under given processing conditions determined by the deposition temperature, pressure and reactant concentration.

A CVD process is also a non-equilibrium process and typically consists of complex chemical reactions. The kinetics of a CVD system involves many steps which determine the rate of the deposition process. Among them, three important steps are: (1) homogeneous reactions taking place among the gases in a reaction chamber, (2) heterogeneous reactions occurring on the surface of a substrate and (3) mass transportation of the gaseous precursors. The overall deposition rate of the CVD process is limited by the slowest step in the three aforementioned steps. This chapter covers these topics and gives details on these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hunt LP (1987) Thermodynamic equilibria in the Si-H-Cl and Si-H-Br systems. In: Cullen GW (ed) Proceedings of the 10th international conference on chemical vapour deposition, Honolulu, HI. Electrochemical Society, Pennington, NJ, pp112–121

    Google Scholar 

  2. Hunt LP (1990) Silicon precursors: their manufacture and properties. In: O’Mara WC, Herring RB, Hunt LP (eds) Handbook of semiconductor silicon technology. Noyes, Park Ridge, NJ, pp1–33

    Google Scholar 

  3. Atkins P, Paula J de (2006) Atkins’ physical chemistry, 8th edn. Oxford University Press, Oxford

    Google Scholar 

  4. Hassell CA, Stasko DJ (2007) Chemistry: principles, patterns and applications. Pearson Education, San Francisco

    Google Scholar 

  5. Mills KC (1974) Thermodynamic data for inorganic sulphides, selenides and tellurides. Butterworths, London

    Google Scholar 

  6. Kubaschewski O, Alcock CB (1979) Metallurgical thermochemistry, 5th edn. Pergamon, Oxford

    Google Scholar 

  7. Stull DR, Prophet H (1986) JANAF Thermochemical Tables, 3rd edn. Parts I and II, American Institute of Physics, U.S. Government Printing Office, Washington, DC

    Google Scholar 

  8. Pedley JB, Naylor RD, Kirby SP (1986) Thermochemical data of organic compounds, 2nd edn. Chapman & Hall, London

    Google Scholar 

  9. Gurvich LV, Veyts IV, Alcock CB (eds) (1989) Thermodynamic properties of individual substances, 4th edn. Hemisphere, New York

    Google Scholar 

  10. Knacke O, Kubaschewski O, Hesselmann K (eds) (1991) Thermochemical properties of inorganic substances. Springer, Berlin Heidelberg New York

    Google Scholar 

  11. Barin I, Sauert F, Schultze–Rhonhof E, Sheng WS (1993) Thermochemical data of pure substances, 2nd ed. VCH Weinheim, New York

    Google Scholar 

  12. Lide DR, Kehiaian HV (1994) CRC handbook of thermophysical and thermochemical data. CRC Press, Boca Raton, FL

    Google Scholar 

  13. Chase MW (1998) NIST-JANAF thermochemical tables, 4th edn, Washington, DC: Published by the American Chemical Society and the American Institute of Physics for the National Institute of Standards and Technology

    Google Scholar 

  14. Davis AG, van Breda JH, Moretto P, Ordelman J (1995) Development of TiN nanocomposite coatings for wear resistance. J de Physque IV 5:C5-831–840

    Article  Google Scholar 

  15. Bernard C, Madar R (1992) Thermochemistry in CVD-on the choice of halide gas species. In: Besmann TM, Gallois BM, Warren JW (eds) Chemical vapor deposition of refractory metals and ceramics II. Materials Research Society, Pittsburg, PA, pp3–15

    Google Scholar 

  16. Tang HP, Vescan L, Luth H (1992) Equilibrium thermodynamic analysis of the Si-Ge-Cl-H system for atmospheric and low pressure CVD of Si1-xGex. J Cryst Growth 116:1–14

    Article  Google Scholar 

  17. Lever RF (1964) IBM J Res Develop, p470

    Google Scholar 

  18. Choy KL (2003) Chemical vapor deposition of coatings. Prog Mater Sci 48:57–170

    Article  Google Scholar 

  19. Leitner J, Vonka P, Mikulec J (1989) Review application of chemical thermodynamics to the description of processes of special inorganic materials preparation. J Mater Sci 24:1521–1527

    Article  Google Scholar 

  20. Eriksson G (1971) Thermodynamic studies of high temperature equilibria. Acta Chem Scand 25:2651–2658

    Article  Google Scholar 

  21. White WB, Johnson SM, Dantzig GB (1958) Chemical equilibrium in complex mixtures. J Chem Phys 28:751–755

    Article  Google Scholar 

  22. Vescan L (1995) Thermally activated chemical vapour deposition. In: Glocker DA, Shah SI (eds) Handbook of thin film process technology. Institute of Physics, Bristol, UK, B1.4:1–39

    Google Scholar 

  23. Fischman GS, Petuskey WT (1985) Thermodynamic analysis and kinetic implications of chemical vapour deposition of SiC from Si-C-Cl-H gas systems. J Am Ceram Soc 68:185–190

    Article  Google Scholar 

  24. Kuta AJ, Davis RF (1983) Thermodynamic calculations for the chemical vapor deposition of silicon nitride. J Am Ceram Soc 66:551–558

    Article  Google Scholar 

  25. Nadal M, Grenet T, Teyssandier F (1993) Titanium borides deposited by chemical vapor deposition thermodynamic calculation and experiments. J Phys IV 2:C3-511–518

    Article  Google Scholar 

  26. Thomas N, Dutron A M, Vahlas C, Bernard C, Madar R (1995) Influence of hydrogen pressure on the properties of CVD tungsten silicide films. J Electrochem Soc142: 1608–1614

    Google Scholar 

  27. Lackey W J, Smith AW, Dillard DM, Twait DJ (1987) Co-deposition of dispersed phase ceramic composites. In: Cullen GW (ed) Proceedings of the 10th international conference on chemical vapor deposition. Electrochemical Society, Pennington, NJ, pp1008–1027

    Google Scholar 

  28. Mulpuri PD, Sarin VK (1996) Synthesis of mullite coatings by chemical vapor deposition. J Mater Res 11:1315–1324

    Article  Google Scholar 

  29. Yeheskel J, Agam S, Dariel M S (1990) Mass specirometeric study of SiC CVD from MTS (CH3SiCl3) and hydrogen. In: Spear K E, Cullen G W (eds) Proceedings of the 11th international conference on chemical vapour depositionm, Seattle, WA. Electrochemical Society, Pennington, NJ

    Google Scholar 

  30. Sotirchol SV, Papasoiliotis GD (1992) Kinetic modeling of the deposition of SiC from methyltrichlorosilane. In: Besmann T M, Gallois B M, Warren J W (eds) Chemical vapor deposition refractory metals and ceramics II. Materials Research Society, Pittsburgh, PA, pp35–40

    Google Scholar 

  31. Allendore MD, Osterheld TH (1995) Modeling the gas-phase chemistry of silicon carbide formation. In: Gallois BM, Lee WY, Pickering MA (eds) Chemical vapour deposition of refractory metals and ceramics III. Materials Research Society, Pittsburgh, PA, pp39–44

    Google Scholar 

  32. Papasouliotis GD, Sotirchos SV (1994) On the homogeneous chemistry of the thermal decomposition of methyltrichlorosilane: thermodynamic analysis and kinetic modelling. J Electrochem Soc141:1599–1611

    Article  Google Scholar 

  33. Osterheld TH, Allendorf MD (1995) The decomposition of methyltrichlorosilane in hydrogen and helium. In: Gallois BM, Lee WY, Pickering MA (eds) Chemical vapour deposition of refractory metals and ceramics III. Materials Research Society, Pittsburgh, PA, pp27–32

    Google Scholar 

  34. Stirling CJM (1965) Radicals in organic chemistry. Oldbourne, London

    Google Scholar 

  35. Isaacs N (1995) Physical organic chemistry, 2nd edn. Longman, Essex, UK

    Google Scholar 

  36. Mogab CJ, Leamy HJ (1974) Conversionof Si to epitaxial SiC by reaction with C2H2. J Appl Phys 45:1075–1084

    Article  Google Scholar 

  37. Stinespring CD, Wormhoudt JC (1989) Surface studies relevant to silicon carbide chemical vapour deposition. J Appl Phys 65:1733–1742

    Article  Google Scholar 

  38. Adamson AW, Gast AP (1997) Physical chemistry of surface, 6th edn. Wiley, New York

    Google Scholar 

  39. Thomas JM, Thomas WJ (1997) Principles and practice of heterogeneous catalysis. VCH, Weinheim

    Google Scholar 

  40. Besmann TM, Sheldon BW, Moss TS, Kaster MD (1992) Depletion effects of silicon carbide deposition from methyltrichlorosilane. J Am Ceram Soc 75:2899–2903

    Article  Google Scholar 

  41. Loumagne F, Langlais F, Naslain R (1995) Experimental kinetic study of the chemical vapour deposition of SiC-based ceramics from CH3SiCl3/H2 gas precursor. J Cryst Growth 155:198–204

    Article  Google Scholar 

  42. Sone H, Kaneko T, Miyakawa N (2000) In situ measurements and growth kinetics of silicon carbide chemical vapor deposition from methyltrichlorosilane. J Cryst Growth 219:245–252

    Article  Google Scholar 

  43. Vescan L (1995) Introduction and general discussion. In: Glocker DA, Shah SI (eds) Handbook of thin film process technology. Institute of Physics, Bristol, UK, B1.0:1–12

    Google Scholar 

  44. Grove AS (1967) Physics and technology of semiconductor devices. Wiley, New York

    Google Scholar 

  45. Hitchman ML, Kane J, Widmer AE (1979) Polysilicon growth kinetics in a low pressure chemical vapour deposition reactor. Thin Solid Films 59:231–247

    Article  Google Scholar 

  46. Reep DH, Ghandhi SK (1983) Morphology of organometallic CVD grown GaAs epitaxial layers. J Cryst Growth 61:449–457

    Article  Google Scholar 

  47. Reep DH, Ghandhi SK (1983) Deposition of GaAs epitaxial layers by organometallic CVD. J Electrochem Soc 130:675–680

    Article  Google Scholar 

  48. Choy K L, Derby B (1991) The CVD of TiB2 protective coating on SiC monofilament fibres. J Phys IV2:C2-697–703

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2010). Thermodynamics and Kinetics of Chemical Vapour Deposition. In: Chemical Vapour Deposition. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-84882-894-0_4

Download citation

Publish with us

Policies and ethics