Skip to main content

Chemical Vapour Deposition Systems Design

  • Chapter

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

This chapter introduces new equipment design and a CVD process methodology. The chapter then gives details of the most commonly used subsystems followed by some special applications of CVD processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. French M (1985) Conceptual design for engineers, 2nd edn. Design Council, London

    Google Scholar 

  2. Pahl G, Beitz W (1996) Engineering design - a systematic approach, 2nd edn. Springer, London

    Google Scholar 

  3. Yan XT (2003) A multiple perspective product modelling and simulation approach to enhancing engineering design decision making. Int J Concurr Eng 11:221–234

    Article  Google Scholar 

  4. Borg J, Yan XT, Juster NP (1999) Exploring decisions’ influence on life-cycle performance to aid design for Multi-X. Artifi Intell Eng Des, Anal and Manuf 13:91–113

    Google Scholar 

  5. Yan XT, Sharpe JEE (1994) A system simulation platform for mechatronic product design. In: Proceedings of the European Simulation Multi-Conference, Barcelona, Spain, pp789–793

    Google Scholar 

  6. Glocker DA, Shah SI (1995) Handbook of thin process technology. IOP

    Google Scholar 

  7. Pierson HO (1999) Handbook of chemical vapour deposition (CVD), 2nd edn. Noyes, Park Ridge, NJ

    Google Scholar 

  8. Choy KL (2003) Chemical vapour deposition of coatings. Prog Mater Sci 48:57–170

    Article  Google Scholar 

  9. Ellison A, Zhang J, Peterson J, Henry A, Wahab Q, Bergman JP, Makarov YN, Vorob’ev A, Vehanen A, Janzen E (1999) High temperature CVD growth of SiC. Mater Sci Eng B61-62:113–120

    Article  Google Scholar 

  10. Comfort JH, Reif R (1989) Chemical vapour deposition of expitaxial silicon from silane at low temperature I: very low pressure deposition. J Electrochem Soc 136:2386–2398

    Article  Google Scholar 

  11. Wachtell RL, Seelig RP (1962) Diffusion coating of non-ferrous metals. US Patent 3,037,833

    Google Scholar 

  12. Vescan L (1995) Introduction and general discussion. In: Glocker DA, Shah SI (eds) Handbook of thin film process technology. Institute of Physics, Bristol, UK. B1.0:1–B1.0:12

    Google Scholar 

  13. Kern W, Ban VS (1978) Chemical vapour deposition of inorganic thin films. In: Vossen JL, Kern W (eds) Thin film processes. Academic, New York, pp257–331

    Google Scholar 

  14. Hitchman ML, Jensen KF (1993) Chemical vapour deposition: principles and applications. Academic, New York

    Google Scholar 

  15. Hopfe V, Grahlert W, Throl O (1999) FTIR based process control for industrial reactors. J Phys IV 9:Pr8-995–1002

    Article  Google Scholar 

  16. Brennfleck K, Scheweis S, Weiss R (1999) In-situ-spectroscopic monitoring for SiC-CVD process control. J Phys IV9:Pr8-1041–1048

    Google Scholar 

  17. Werner C (1991) Numerical modeling of CVD processes and equipment. J Phys IV 2:C2-3–18

    Article  Google Scholar 

  18. Vescan L (1995) Thermally activatived chemical vapour deposition. In: Glocker D A, Shah S I (eds) Handbook of thin film process technology. Institute of Physics, Bristol, UK. B1.4:1–B1.0:41

    Google Scholar 

  19. Leskela M, Ritala M (1999) ALD precursor chemistry: evolution and future challenges. J Phys IV 9:Pr8-837–852

    Article  Google Scholar 

  20. Jones AC, Aspinall HC, Chalker PR (2007) Molecular design of improved procuresors for the MOCVD of oxides used in microelectronics. Surface Coat Technol 201:9046–9053

    Article  Google Scholar 

  21. Turgambaeva AE, Bykov AF (1997) Igumenov IK, Routes of thermal decomposition of metal β-diketonates. In: Allendorf MD, Bernard C (eds) Proceedings of the 14th international conference on chemical vapour deposition/Jointly held with the Euro CVD-11, Paris, France. Electrochemical Society, Pennington, NJ, pp139–146

    Google Scholar 

  22. Gorden RG (2000) New liquid precursors for CVD of metal-containing materials. In: Allendorf MD, Hitchman ML (eds) Proceedings of the 15th international symposium on chemical vapour deposition. Toronto, Canada. Electrochemical Society, Pennington, NJ, pp248–259

    Google Scholar 

  23. Goela JS, Taylor RL (1988) Monolithic material fabrication by chemical vapour deposition. J Mater Sci 23:4331–4339

    Article  Google Scholar 

  24. Boer HJ (1995) Mass flow controlled evaporation system. J Phys IV5:C5-961–966

    Google Scholar 

  25. Ziko JL (1988) Metal-organic chemical vapour deposition: technology and equipment. In: Schuergraf KK Handbook of thin film deposition processes and techniques. Noyes, Park Ridge, NJ, pp234–269

    Google Scholar 

  26. Vargaftik N B (1983) Handbook of physical properties of liquids and gases, pure substances and mixtures, 2nd edn. Hemisphere, Washington, DC

    Google Scholar 

  27. Kawahara K, Fukase K, Inoue Y, Taguchi E, Yoneda K (1987) CVD spinel on Si. In: Cullen GW (ed) Proceedings of the 10th international conference on chemical vapor deposition. Electrochemical Society, Pennington, NJ, pp588–602

    Google Scholar 

  28. Sherman AJ, Tuffias RH, Kaplan RB (1991) Refractory ceramic foams: a novel, new high-temperature structure. Am Ceram Soc Bull 70:1025–1029

    Google Scholar 

  29. Benard ICJ (1988) Handbook of fluid metering, 1st edn. Trade & Technical Press, Morden, Surrey, England, UK

    Google Scholar 

  30. Siev R, Liptak BG (1993) Mass flowmeters-thermal. In: Liptak BG (ed) Flow measurement. Clinton, Radnor, PA, pp68–72

    Google Scholar 

  31. Boer IHJ (1999) Precision mass flow metering for CVD applications. J Phys IV 9:Pr8-869–876

    Article  Google Scholar 

  32. Yarwood J (1975) High vacuum technique, 4th revised edn. Chapman & Hall, New York, p103

    Google Scholar 

  33. Merrick RC (1991) Valve selection and specification guide. Van Nostrand Reinhold, New York, p226

    Google Scholar 

  34. Stinton DP, Lackey WJ (1985) Simultaneous chemical vapour deposition of SiC-dispered phase composites. Ceram Eng Sci Proc 6:707–713

    Article  Google Scholar 

  35. Ichijo S, Tamura K, Takano T, Nakao A, Hirahara T (1991) Properties and practical results of tungsten carbide coating produced by low temperature CVD process. J Phys IV2:C2-497–504

    Google Scholar 

  36. Brennfleck K, Reich H (1991) CVD of SiC in large coating vessels. J Phys IV 2:C2-467–474

    Article  Google Scholar 

  37. Bouquet C, Fischer R, Larrieu JM, Uhrig G, Thebault J (2003) Composite technologies development status for scramjet applications. In: Proceedings of 12th AIAA International Space Planes and Hypersonics Systems and Technologies :AIAA-2003-6917, Norfolk, VA

    Google Scholar 

  38. Bouquet C, Fischer R, Thebault J, Soyris P, Uhrig G (2005) Composite technologies development status for scramjet. In: Proceedings of AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies :AIAA-2005-3431, Capua, Italy

    Google Scholar 

  39. Jensen KF (1994) Transport phenomena in vapour phase epitaxy reactor. In: Hurle D T J (ed) Handbook of crystal growth 3. Thin Films and Epitaxy. Elsevier, Amsterdam, pp543–599

    Google Scholar 

  40. Fotiadis DI, Kieda S (1990) Transport phenomena in vertical reactors for metalorganic vapour phase epitaxy. J Cryst Growth 102:411–470

    Google Scholar 

  41. Incropera FP, Dewitt DP (2001) Fundamentals of heat and mass transfer, 5th edn. Wiley, New York, p408

    Google Scholar 

  42. Sparrow EM, Eichhorn R, Gregg JL (1959) Combined forced and free convection in a boundary layer flow. Physics of Fluids 2:319–328

    Article  MATH  MathSciNet  Google Scholar 

  43. Niihara K, Hirai T (1976) Chemical vapor-deposited silicon nitride, Part 1 Preparation and some properties. J Mater Sci 11:593–603

    Article  Google Scholar 

  44. Campbell S A (2001) The science and engineering of microelectronic fabrication, 2nd edn. Oxford University Press, Oxford, p340

    Google Scholar 

  45. Mironer A (1979) Engineering fluid mechanics. McGraw–Hill, New York

    Google Scholar 

  46. Munson BR, Young DF, Okiishi TH (2006) Fundamentals of fluid mechanics, 5th edn. Wiley, New York

    Google Scholar 

  47. Li SJ (1980) Engineering fluid mechanics. China Machine Press, Beijing

    Google Scholar 

  48. Jiang YZ (1993) Industrial electric furnaces. Tsinghua University Press, Beijing

    Google Scholar 

  49. Paschkis V, Persson J (1960) Industrial electric furnaces and appliances. Interscience, New York

    Google Scholar 

  50. Worrall RW, Liptak BG (1993) Thermocouples. In: Liptak BG (ed) Temperature measurement. Clinton, Radnor, PA

    Google Scholar 

  51. Sherman A (1987) Chemical vapour deposition for microelectronics: principles, technology, and applications. Noyes, Park Ridge, NJ, p155

    Google Scholar 

  52. Hammond ML (1991) CVD exhaust-safety and environmental sanity. J PhysIV2:C2-449–458

    Google Scholar 

  53. Schuergraf KK (1988) Handbook of thin film deposition processes and techniques. Noyes, Park Ridge, NJ

    Google Scholar 

  54. Baechler WG (1987) Cryopumps for research and industry. Vacuum 37:21–29

    Article  Google Scholar 

  55. Harris NS (1989) Modern vacuum practice. McGraw–Hill, London

    Google Scholar 

  56. Silicone Research Group in Chengguang Institute of Chemical Engineering (1986) Silicone monomer and polymer. Chemical Industry Press, Beijing

    Google Scholar 

  57. Pan ZW, Li HL, Zhang LT (1998) Laser synthesis and crystallization of nanocomposite SiyCyN powder. J Mater Res 13:1996–2002

    Article  Google Scholar 

  58. www.specmaterials.com

    Google Scholar 

  59. Ning XJ, Pirouz P, Lagerlof KPD, DiCarlo J (1990) The structure of carbon in chemically vapor deposited SiC monofilaments. J Mater Res 5:2865–2876

    Article  Google Scholar 

  60. Bhatt RT, Hull DR (1998) Strength-degrading mechanisms for chemically-vapordeposited SCS-6 silicon carbide fibres in an argon environment. J Am Ceram Soc 81:957–964

    Article  Google Scholar 

  61. Yu JK, Li HL, Shang BL (1994) A functionally gradient coating on carbon fibre for C/Al composites. J Mater Sci 29:2641–2647

    Article  Google Scholar 

  62. Moore AW (1992) Facility for continuous CVD coating of ceramic fibres. In: Besmann TM, Gallois BM, Warren JW (eds) Chemical vapour deposition of refractory metals and ceramics II. Materials Research Society, Pittsburgh, PA, pp269–274

    Google Scholar 

  63. Vahlas C, Caussat BG, Serp P, Angelopoulos GN (2006) Principles and applications of CVD powder technology. Mater Sci Eng R53:1–72

    Article  Google Scholar 

  64. Geldart D (1986) Gas fluidization technology. Wiley, New York

    Google Scholar 

  65. Ceankoplis CJ (1993) Transport processes and unit operations, 3rd edn. Prentice Hall, Engelwood Cliffs, NJ

    Google Scholar 

  66. Helary D, Bourrat X, Dugne O, Maveyraud G, Perez M, Guillermier P (2004) Microstructures of silicon carbide and pyrocarbon coatings for fuel particles for high temperature reactors (HTR), 2nd international topical meeting on high temperature reactor technology. Beijing, China, 22–24 September 2004

    Google Scholar 

  67. Ueta S, Aihara J, Yasuda A, Ishibashi H, Takayama T, Sawa K (2008) Fabrication of uniform ZrC coating layer for the coated fuel particle of the very high temperature reactor. J Nucl Mater 376:146–151

    Article  Google Scholar 

  68. Wagner RS, Ellis WC (1964) Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett 4:89–90

    Article  Google Scholar 

  69. Milewski JV, Gac FD, Petrovic JJ, Skaggs SR (1985) Growth of beta-silicon carbide whiskers by the VLS process. J Mater Sci 20:1160–1166

    Article  Google Scholar 

  70. Motojima S, Hasegawa I, Iwanaga H (1995) Vapour growth of micro-coiled cermic fibres and their properties. J Phys IV 5:C5-1061–1068

    Article  Google Scholar 

  71. Motojima S, Kawaguchi M, Nozaki K (1991) Preparation of coiled carbon fibres by catalytic pyrolysis of acetylene, and its morphology and extension characteristics. Carbon 29(3):379–385

    Article  Google Scholar 

  72. Motojima S, Hamamoto T, Ueshima N, Kojima Y, Iwanaga H (1997) Preparation and properties of ceramic micro-coils by CVD process. In: Allendorf MD, Bernard C (eds) Proceedings of the 14th international conference on chemical vapour deposition/Jointly held with the Euro CVD-11. Paris, France. Electrochemical Society, Pennington, NJ, pp433–439

    Google Scholar 

  73. Shoup SS, Shanmugham S, Cousins D, Hunt AT (1999) Low-cost combustion chemical vapour deposition of epitaxial buffer layers and superconductor. IEEE Trans on Appl Superconductiv 9:2426–2429

    Article  Google Scholar 

  74. Pickering MA, Goela JS, Burns LE (1995) Chemical vapour deposition furnace and furnace apparatuss. US Patent 5,474,613

    Google Scholar 

  75. Burn L, Haas R (2000) Silicon carbide. Am Ceram Soc Bull 79(6):52

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2010). Chemical Vapour Deposition Systems Design. In: Chemical Vapour Deposition. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-84882-894-0_3

Download citation

Publish with us

Policies and ethics